Experimental Performance Study of Industrial-Grade Coordinate Measuring Machines Using a Calibrated Production Workpiece

2014 ◽  
Vol 613 ◽  
pp. 118-124
Author(s):  
Crhistian Raffaelo Baldo ◽  
Gustavo Daniel Donatelli

The measurement of a part on a coordinate measuring machine may be affected by many factors such as machine frame accuracy, probe configuration, measuring environment, and measurement strategy. In order to understand the effect of some of those factors on measurements performed in industrial-grade machines, a master production workpiece has been chosen and circulated in Brazilian industries for collecting data points of the calibrated workpiece features according to a predefined master measuring protocol. Conclusions could be drawn about the behavior of each machine under varying conditions, measurement divergences from similar machines operating under distinct conditions, the complexity of measurements with CMMs, and the need for good measurement practices in the productive sector.

Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 55
Author(s):  
Ferencz Peti ◽  
Petru Serban

Starting from the idea of improving Coordinate Measuring Machines’ (CMM) measurement strategy for inner thread locations, we developed a new method which increases the accuracy of measurements and takes us closer to the pitch diameter. This article will analyze this new method by testing different touching probes configurations for different thread sizes. The objective is to identify the best probe configuration to be used in the measurements of different inner thread sizes.


2005 ◽  
Vol 295-296 ◽  
pp. 325-330 ◽  
Author(s):  
M. Watanabe ◽  
Ryoshu Furutani

Requirement for precision measurement becomes extremely advanced as industrial needs advances. CMM (Coordinate Measuring Machine) is one of the most adequate measuring machines to meet the requirement. As the precision of CMM becomes higher, it is important to improve the sensitivity of probe. We developed a contact type probe which consisted of a QPD (quadratic photo diode), a ball lens, and a laser diode to detect the displacement of stylus. The probe system has a resolution of 31nm.


2011 ◽  
Vol 18 (2) ◽  
pp. 209-222 ◽  
Author(s):  
G. Rajamohan ◽  
M. Shunmugam ◽  
G. Samuel

Practical Measurement Strategies for Verification of Freeform Surfaces Using Coordinate Measuring MachinesFreeform surfaces have wider engineering applications. Designers use B-splines, Non-Uniform Rational B-splines, etc. to represent the freeform surfaces in CAD, while the manufacturers employ machines with controllers based on approximating functions or splines. Different errors also creep in during machining operations. Therefore the manufactured freeform surfaces have to be verified for conformance to design specification. Different points on the surface are probed using a coordinate measuring machine and substitute geometry of surface established from the measured points is compared with the design surface. The sampling points are distributed according to different strategies. In the present work, two new strategies of distributing the points on the basis of uniform surface area and dominant points are proposed, considering the geometrical nature of the surfaces. Metrological aspects such as probe contact and margins to be provided along the sides have also been included. The results are discussed in terms of deviation between measured points and substitute surface as well as between design and substitute surfaces, and compared with those obtained with the methods reported in the literature.


2018 ◽  
Vol 232 ◽  
pp. 02015
Author(s):  
Zhihua Jiang ◽  
Wenjian Zhang ◽  
Lizhen Cui

Three dimensional laser scanning coordinate measuring machine is suitable for the measurement of 3D printing products, and its measuring range depends on the three coordinate measuring machine. It is the main 3D printing product measuring instrument [1]. In this paper, the principle of laser scanning three coordinate measuring machine is analyzed. The accuracy and reliability of the calibration system for 3D printing products are verified. According to the newly revised JJF 1064 Calibration specification for coordinate measuring machines [3], it is calibrated.


Author(s):  
Haitao Zhang ◽  
Shugui Liu ◽  
Xinghua Li

REVO five-axis system, designed for the orthogonal coordinate measuring machines, must be reconfigured for the application in the non-orthogonal coordinate measuring machines. First, in this article, error sources of the system and components of measurement data are analyzed; then, scale values of coordinate measuring machine axes, which are essential to derive the coordinates of measured points in non-orthogonal coordinate measuring machine, are separated out. Besides, the mathematical model of REVO is established based on the quasi-rigid body theory, from which the measurement results can be evaluated by data derived instead of that returned by the system. The effectiveness of both separation of scale values and mathematical model of REVO is proved by experiments and practice. The research of this article is of great significance to the application of REVO five-axis system in the non-orthogonal coordinate measuring machine.


Author(s):  
Kenta UMETSU ◽  
Ryoshu FURUTANI ◽  
Sonko OSAWA ◽  
Tosiyuki TAKATSUJI ◽  
Tomizo KUROSAWA

Author(s):  
Sam Anand ◽  
Sridhar Jaganathan ◽  
Sampath Damodarasamy

Abstract This paper presents a new and accurate algorithm for assessing circularity tolerance from a set of data points obtained from a Coordinate Measuring Machine (CMM). This method, called Selective Zone Search algorithm, divides the workspace into small sectors called search zones and searches for the extreme points in these zones. These extreme points are used to draw a pair of concentric circles with minimum radial separation. The radial difference gives the circularity. The methodology has been tested with several example data sets and the results have been compared with the Least Squares method, Minimum Spanning Circle method and the Voronoi Diagram method.


2012 ◽  
Vol 549 ◽  
pp. 1012-1016
Author(s):  
Hui Guo ◽  
Yan Hui Hu ◽  
Xiao Jing Li

Reverse engineering has become an important tool for CAD model construction from the data points, measured by a coordinate measuring machine (CMM), of an existing part. However, due to special structure and complex topology relation, obtaining full surface data of a prototype is not an easy thing and should carry out complex data process procedure to get global model. The paper presents a method for pre-processing data points for curve fitting in reverse engineering. The proposed method has been developed to process the measured data points before fitting into a B-spline form. The method is implemented and used for a practical application in reverse engineering. The result of the reconstruction proves the viability of the proposed method for integration with current commercial CAD systems.


2014 ◽  
Vol 14 (1) ◽  
pp. 1-7 ◽  
Author(s):  
A. Gąska ◽  
D. Szewczyk ◽  
P. Gąska ◽  
M. Gruza ◽  
J. Sładek

Abstract Nowadays, simulators facilitate tasks performed daily by the engineers of different branches, including coordinate metrologists. Sometimes it is difficult or almost impossible to program a Coordinate Measuring Machine (CMM) using standard methods. This happens, for example, during measurements of nano elements or in cases when measurements are performed on high-precision (accurate) measuring machines which work in strictly air-conditioned spaces and the presence of the operator in such room during the programming of CMM could cause an increase in temperature, which in turn could make it necessary to wait some time until conditions stabilize. This article describes functioning of a simulator and its usage during Coordinate Measuring Machine programming in the latter situation. Article also describes a general process of programming CMMs which ensures the correct machine performance after starting the program on a real machine. As an example proving the presented considerations, measurement of exemplary workpiece, which was performed on the machine working in the strictly air-conditioned room, was described


2015 ◽  
Vol 798 ◽  
pp. 303-307 ◽  
Author(s):  
Benedito di Giacomo ◽  
César Augusto Galvão de Morais

Dimensional inspections in manufactured workpieces allow assess the quality of the manufacturing process, in this context the quality and development of measurement systems are issues addressed by many researchers. The coordinate measuring machines (CMMs) are versatile systems, can measure complex geometries quickly and accurately. Positional errors are parts of volumetric error and affect the correct positioning of probe in CMMs or of the tool in machine tools. Faced with this, the purpose this investigation is show a method to calibrate the positional errors in a bridge-type coordinate measuring machine, this method collects data in dynamic mode and reduces cyclic errors. The calibration of positional errors was performed using laser interferometry in the “on-the-fly” mode and a method to reduce cyclic errors was applied. The highest value of position error occurred in x axis with value positive of 10μm in the position of 220mm, while in the y and z axis the higher absolute values were 2μm and 6μm respectively. From calibration and compensating of positional errors it is possible to reduce the effects of the volumetric errors in machines with axis of linear displacements as the CMMs and machine tools.


Sign in / Sign up

Export Citation Format

Share Document