Calibration of Positional Errors in Coordinate Measuring Machines and Machine Tools Using a Laser Interferometer System

2015 ◽  
Vol 798 ◽  
pp. 303-307 ◽  
Author(s):  
Benedito di Giacomo ◽  
César Augusto Galvão de Morais

Dimensional inspections in manufactured workpieces allow assess the quality of the manufacturing process, in this context the quality and development of measurement systems are issues addressed by many researchers. The coordinate measuring machines (CMMs) are versatile systems, can measure complex geometries quickly and accurately. Positional errors are parts of volumetric error and affect the correct positioning of probe in CMMs or of the tool in machine tools. Faced with this, the purpose this investigation is show a method to calibrate the positional errors in a bridge-type coordinate measuring machine, this method collects data in dynamic mode and reduces cyclic errors. The calibration of positional errors was performed using laser interferometry in the “on-the-fly” mode and a method to reduce cyclic errors was applied. The highest value of position error occurred in x axis with value positive of 10μm in the position of 220mm, while in the y and z axis the higher absolute values were 2μm and 6μm respectively. From calibration and compensating of positional errors it is possible to reduce the effects of the volumetric errors in machines with axis of linear displacements as the CMMs and machine tools.

2021 ◽  
Author(s):  
Shixiang Wang ◽  
Chi Fai Cheung ◽  
Lingbao Kong

Abstract In this paper, a fiducial-aided reconfigurable artefact is presented for estimating volumetric errors of a multi-axis machine tools. The artefact makes use of an adjustable number of standard balls as fiducials to build a 3D artefact which has been calibrated on a coordinate measuring machine (CMM). This 3D artefact shows its reconfigurability in its number of fiducials and their locations according to the characteristics of workpieces and machine tools. The developed kinematics of the machine tool was employed to identify the volumetric errors in the working space by comparing the information acquired by the on-machine metrology with that by the CMM. Experimental studies are conducted on a five-axis ultra-precision machine tools mounted with the 3D artefact composed of five standard spheres. Factors including the gravity effect and measurement repeatability are examined for the optimization of the geometry of the artefact. The results show that the developed 3D artefact is able to provide information of the volume occupied by the workpiece.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1941
Author(s):  
Aurel Tulcan ◽  
Mircea Dorin Vasilescu ◽  
Liliana Tulcan

The objective of this paper is to determine how the supporting structure in the DLP 3D printing process has influences on the characteristics of the flat and cylindrical surfaces. The part is printed by using the Light Control Digital (LCD) 3D printer technology. A Coordinate Measuring Machine (CMM) with contact probes is used for measuring the physical characteristics of the printed part. Two types of experiment were chosen by the authors to be made. The first part takes into consideration the influence of the density of the generated supports, at the bottom of the printed body on the characteristics of the flat surface. In parallel, it is studying the impact of support density on the dimension and quality of the surface. In the second part of the experiment, the influence of the printed supports dimension on the flatness, straightness and roundness of the printed elements were examined. It can be observed that both the numerical and dimensional optimum zones of the support structure for a prismatic element could be determined, according to two experiments carried out and the processing of the resulting data. Based on standardized data of flatness, straightness and roundness, it is possible to put in accord the values determined by measurement within the limits of standardized values.


2006 ◽  
Vol 129 (3) ◽  
pp. 636-643 ◽  
Author(s):  
Bethany A. Woody ◽  
K. Scott Smith ◽  
Robert J. Hocken ◽  
Jimmie A. Miller

High-speed machining (HSM) has had a large impact on the design and fabrication of aerospace parts and HSM techniques have been used to improve the quality of conventionally machined parts as well. Initially, the trend toward HSM of monolithic parts was focused on small parts, where existing machine tools have sufficient precision to machine the required features. But, as the technology continues to progress, the scale of monolithic parts has continued to grow. However, the growth of such parts has become limited by the inability of existing machines to achieve the tolerances required for assembly due to the long-range accuracy and the thermal environment of most machine tools. Increasing part size without decreasing the tolerances using existing technology requires very large and very accurate machines in a tightly controlled thermal environment. As a result, new techniques are needed to precisely and accurately manufacture large scale monolithic components. Previous work has established the fiducial calibration system (FCS), a technique, which, for the first time provides a method that allows for the accuracy of a coordinate measuring machine (CMM) to be transferred to the shop floor. This paper addresses the range of applicability of the FCS, and provides a method to answer two fundamental questions. First, given a set of machines and fiducials, how much improvement in precision of the finished part can be expected? And second, given a desired precision of the finished part, what machines and fiducials are required? The achievable improvement in precision using the FCS depends on a number of factors including, but not limited to: the type of fiducial, the probing system on the machine and CMM, the time required to make a measurement, and the frequency of measurement. In this paper, the sensitivity of the method to such items is evaluated through an uncertainty analysis, and examples are given indicating how this analysis can be used in a variety of cases.


2005 ◽  
Vol 295-296 ◽  
pp. 325-330 ◽  
Author(s):  
M. Watanabe ◽  
Ryoshu Furutani

Requirement for precision measurement becomes extremely advanced as industrial needs advances. CMM (Coordinate Measuring Machine) is one of the most adequate measuring machines to meet the requirement. As the precision of CMM becomes higher, it is important to improve the sensitivity of probe. We developed a contact type probe which consisted of a QPD (quadratic photo diode), a ball lens, and a laser diode to detect the displacement of stylus. The probe system has a resolution of 31nm.


2011 ◽  
Vol 18 (2) ◽  
pp. 209-222 ◽  
Author(s):  
G. Rajamohan ◽  
M. Shunmugam ◽  
G. Samuel

Practical Measurement Strategies for Verification of Freeform Surfaces Using Coordinate Measuring MachinesFreeform surfaces have wider engineering applications. Designers use B-splines, Non-Uniform Rational B-splines, etc. to represent the freeform surfaces in CAD, while the manufacturers employ machines with controllers based on approximating functions or splines. Different errors also creep in during machining operations. Therefore the manufactured freeform surfaces have to be verified for conformance to design specification. Different points on the surface are probed using a coordinate measuring machine and substitute geometry of surface established from the measured points is compared with the design surface. The sampling points are distributed according to different strategies. In the present work, two new strategies of distributing the points on the basis of uniform surface area and dominant points are proposed, considering the geometrical nature of the surfaces. Metrological aspects such as probe contact and margins to be provided along the sides have also been included. The results are discussed in terms of deviation between measured points and substitute surface as well as between design and substitute surfaces, and compared with those obtained with the methods reported in the literature.


2018 ◽  
Vol 232 ◽  
pp. 02015
Author(s):  
Zhihua Jiang ◽  
Wenjian Zhang ◽  
Lizhen Cui

Three dimensional laser scanning coordinate measuring machine is suitable for the measurement of 3D printing products, and its measuring range depends on the three coordinate measuring machine. It is the main 3D printing product measuring instrument [1]. In this paper, the principle of laser scanning three coordinate measuring machine is analyzed. The accuracy and reliability of the calibration system for 3D printing products are verified. According to the newly revised JJF 1064 Calibration specification for coordinate measuring machines [3], it is calibrated.


Author(s):  
Jimmy Adjunta ◽  
Donald Houser

Abstract This paper is primarily concerned with the evaluation of the dimensional quality of spur gears produced by two casting processes, i. e., the investment casting and v-sand casting processes. The casting patterns used were designed by compensating for process shrinkage, and were manufactured using a flexible CNC gear machining process. A computer program, CASTGR, was written to facilitate the design phase of the patterns. The various gear configurations cast were inspected using an universal coordinate measuring machine. The geometry of the casting and pattern were correlated to verify the contraction characteristics of the gear castings. In an attempt to categorize the precision capabilities of the two casting processes, the spread of the deviations found for tooth thickness measurements and measurements along profiles and leads of the cast gears were examined. The observed effects of other process variables is also included.


Author(s):  
Haitao Zhang ◽  
Shugui Liu ◽  
Xinghua Li

REVO five-axis system, designed for the orthogonal coordinate measuring machines, must be reconfigured for the application in the non-orthogonal coordinate measuring machines. First, in this article, error sources of the system and components of measurement data are analyzed; then, scale values of coordinate measuring machine axes, which are essential to derive the coordinates of measured points in non-orthogonal coordinate measuring machine, are separated out. Besides, the mathematical model of REVO is established based on the quasi-rigid body theory, from which the measurement results can be evaluated by data derived instead of that returned by the system. The effectiveness of both separation of scale values and mathematical model of REVO is proved by experiments and practice. The research of this article is of great significance to the application of REVO five-axis system in the non-orthogonal coordinate measuring machine.


2014 ◽  
Vol 613 ◽  
pp. 118-124
Author(s):  
Crhistian Raffaelo Baldo ◽  
Gustavo Daniel Donatelli

The measurement of a part on a coordinate measuring machine may be affected by many factors such as machine frame accuracy, probe configuration, measuring environment, and measurement strategy. In order to understand the effect of some of those factors on measurements performed in industrial-grade machines, a master production workpiece has been chosen and circulated in Brazilian industries for collecting data points of the calibrated workpiece features according to a predefined master measuring protocol. Conclusions could be drawn about the behavior of each machine under varying conditions, measurement divergences from similar machines operating under distinct conditions, the complexity of measurements with CMMs, and the need for good measurement practices in the productive sector.


Sign in / Sign up

Export Citation Format

Share Document