scholarly journals Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Duk-Yeon Kim ◽  
Young-Hwan Han ◽  
Jun Hee Lee ◽  
Inn-Kyu Kang ◽  
Byung-Koog Jang ◽  
...  

Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphologyin vitrofor 1 day.

2009 ◽  
Vol 19 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Motohiro Uo ◽  
Tomoka Hasegawa ◽  
Tsukasa Akasaka ◽  
Isao Tanaka ◽  
Fuminori Munekane ◽  
...  

2008 ◽  
Vol 368-372 ◽  
pp. 1059-1061 ◽  
Author(s):  
Ai Bing Du ◽  
Zhi Xue Qu ◽  
Chun Lei Wan ◽  
Ruo Bing Han ◽  
Wei Pan

Spark plasma sintering was used to fabricate the LaPO4 ceramics and the effect of SPS holding time and sintering temperature on the densification and texture of LaPO4 ceramics were studied. The results revealed that holding time had no obvious influence on the densification of LaPO4 ceramics under the present process. The density increases with the increase of sintering temperature, when it reached 1350°C, the relative density kept nearly constant of 98.6 %. The preferred orientation of LaPO4 ceramics approximately increases with the increase of sintering temperature, but contrary impact in holding time.


2014 ◽  
Vol 616 ◽  
pp. 194-198 ◽  
Author(s):  
Jian Feng Zhang ◽  
Rong Tu ◽  
Takashi Goto

WC-Co-cBN composites were consolidated by SPS at 1373 to 1673 K under a moderate pressure of 100 MPa. The addition of cBN increased the starting and finishing temperature of shrinkage and decreased the relative density of WC-Co. The relative density of WC-(10-20 vol%) cBN composites was about 97-100% at 1573 K and decreased with increasing the sintering temperature to 1673 K due to the phase transformation of cBN to hBN. The highest hardness and fracture toughness of WC-Co-20 vol% cBN composite sintered at 1573 K were 23.2 GPa and 8.0 MP m1/2, respectively.


2014 ◽  
Vol 783-786 ◽  
pp. 1542-1547
Author(s):  
Anway Maiti ◽  
Ram S. Maurya ◽  
Tapas Laha

Multiwalled carbon nanotube (MWCNT) reinforced Al-Si (11 wt%) alloy based nanocomposites were synthesized by spark plasma sintering using high energy ball milled nanocrystalline Al-Si powders mixed with physically functionalized MWCNTs. Improvement in MWCNT dispersion and associated improvement in densification of the nanocomposites were confirmed. The microhardness and elastic modulus of the nanocomposites measured by nanoindentation exhibited appreciable improvement. Grain size measurement by X ray diffraction and transmission electron microscopy confirmed achievement of nanocrystalline grains in Al-Si powder after ball milling, as well as in the consolidated nanocomposites. TEM analysis was performed to reveal the dislocation activity, effect of presence of primary Si and distribution of MWCNTs in the nanocomposites.


2007 ◽  
Vol 351 ◽  
pp. 176-179 ◽  
Author(s):  
Fa Qiang Yan ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

In the present study, α-Si3N4 is prepared by using MgO and Al2O3 as the sintering additives and spark plasma sintering (SPS) technique. The SPS sintering mechanism is discussed. The relationship between the content of sintering additives, sintering temperature and relative densities of the samples is analyzed. The results suggest that when the sintering temperature is 1300-1500°C, the content of sintering additives is 6wt.%-10wt.%, the relative density of sintered samples is 64%-96%. When the sintering temperature reaches 1400°C, the content of sintering additives is 10%, the samples can be fully dense sintered and the relative density can be up to 95%. The sintering mechanism is liquid phase sintering. The bending strength of the sintered samples is 50-403MPa and has a close correlation with the relative density.


2012 ◽  
Vol 512-515 ◽  
pp. 739-743 ◽  
Author(s):  
S.Z. Zhu ◽  
D.L. Gong ◽  
Z. Fang ◽  
Q. Xu

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.


2007 ◽  
Vol 534-536 ◽  
pp. 893-896 ◽  
Author(s):  
Swapan Kumar Sarkar ◽  
Min Ho Youn ◽  
Ik Hyun Oh ◽  
Byong Taek Lee

Carbon nanotube (CNT) reinforced hydroxyapatite (HAp) composites were fabricated by using the spark plasma sintering process with surfactant modified CNT and HAp nano powder. Without the dependency on sintering temperature, the main crystal phase existed with the HAp phase although a few contents of β-TCP (Tri calcium phosphate) phase were detected. The maximum fracture toughness, (1.27 MPa.m1/2) was obtained in the sample sintered at 1100 oC and on the fracture surface a typical intergranular fracture mode, as well as the pull-out pmhenomenon of CNT, was observed.


2013 ◽  
Vol 683 ◽  
pp. 573-576
Author(s):  
Abdul Rehman Niazi ◽  
Shu Kui Li ◽  
Ying Chun Wang ◽  
Jin Xu Liu ◽  
Zhi Yu Hu ◽  
...  

Temperature being one of the most important parameters of Spark plasma sintering (SPS) and its effects on the microstructures as well as on the physical properties of copper diamond composites fabricated by mechanical mixing of copper with 70 vol.% diamond powders, precoated with 1 wt% chromium has been studied. Experiments were performed at 900°C, 1000°C and 1100 °C for 10 minutes under 50 MPa. The results reveal that sintering temperature highly influences the copper/diamond interface bonding and microstructures. The composite’s properties like thermal conductivity (T.C), specific heat (Cp), diffusivity (Dff) and relative density (ρr) were also highly influenced by temperature variations. Except the relative density, all the other properties increased respectively with increasing sintering temperature.


Sign in / Sign up

Export Citation Format

Share Document