Sol Gel Synthesis and In Vitro Evaluation of Apatite Forming Ability of Silica-Based Composite Glass in SBF

2015 ◽  
Vol 660 ◽  
pp. 125-131 ◽  
Author(s):  
S.A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin

In this study, xerogel glass based on SiO-CaO-PO4 was synthesized by a low temperature acid catalysed sol-gel route. The in vitro evaluation of apatite forming ability for the glass was conducted in simulated body fluid (SBF) solution as the glasses were immersed for duration of 1, 7, 24 hours and 7 days. The XRD analysis showed that the glass formed semi-crystalline structure when sintered at 1000oC and consisted of Ca2O7P2 and Ca2O4Si phases. Image captured using FESEM showed the apatite-like structures were eventually formed on the glass top surface in small numbers after the glass immersed in SBF for only an hour. The numbers of the apatite structures were continuously grown with the increase period of immersion time. The apatite structure mostly covered on top of the glass surface after 24 hours of immersion and continuously growth into bone-like apatite structure when immersed for 7 days in the SBF. The apatite layer formed on the surface of the glass was confirmed as crystalline structure of hydroxyl-carbonate-apatite (HCA) as revealed by the complimentary results of EDS, XRD and FTIR analysis.

2015 ◽  
Vol 754-755 ◽  
pp. 964-968 ◽  
Author(s):  
S.A. Syed Nuzul Fadzli ◽  
S. Roslinda ◽  
Firuz Zainuddin

A phosphate-free glass based on SiO2-CaO was synthesized by a low temperature acid catalysed sol-gel route. The obtained material was evaluated by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The XRD analysis showed the sol-gel derived glass was amorphous in nature and crystallized when sintered at temperature above 900oC. The crystalline state was consisted of quartz and wollastonite phases. Meanwhile the infrared analysis showed typical transmission bands of monolith silica in the binary glass pattern. The bioactivity of the amorphous glass was investigated in vitro in simulated body fluid (SBF). The amorphous glasses were soaked in SBF for 1, 3 and 7 days. It is notable that the obtained results from FTIR, SEM and EDS analyses showed the deposition of spherical-shaped crystalline hydroxyl-carbonate-apatite (HCA) on the surface of the glass within 3 days of immersion in SBF solution. The HCA deposition was covered most of the surface after 7 days of immersion.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1554
Author(s):  
Justinas Januskevicius ◽  
Zivile Stankeviciute ◽  
Dalis Baltrunas ◽  
Kęstutis Mažeika ◽  
Aldona Beganskiene ◽  
...  

In this study, an aqueous sol-gel synthesis method and subsequent dip-coating technique were applied for the preparation of yttrium iron garnet (YIG), yttrium iron perovskite (YIP), and terbium iron perovskite (TIP) bulk and thin films. The monophasic highly crystalline different iron ferrite powders have been synthesized using this simple aqueous sol-gel process displaying the suitability of the method. In the next step, the same sol-gel solution was used for the fabrication of coatings on monocrystalline silicon (100) using a dip-coating procedure. This resulted, likely due to substrate surface influence, in all coatings having mixed phases of both garnet and perovskite. Thermogravimetric (TG) analysis of the precursor gels was carried out. All the samples were investigated by X-ray powder diffraction (XRD) analysis. The coatings were also investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Mössbauer spectroscopy. Magnetic measurements were also carried out.


Author(s):  
Megha Mahabole ◽  
Manjushree Bahir ◽  
Rajendra Khairnar

Abstract: In this study, in-vitro bioactivity of manganese blended hydroxyapatite (Mn-HAp) pellets is carried out using simulated body fluid (SBF) solution. The incubated Mn-HAp samples are characterized by XRD, FTIR and SEM/EDAX. Dielectric and photoluminescence properties of Mn-HAp samples are studied as a function of incubation period in SBF. XRD profiles show that hexagonal apatite structure remains intact after partial replacement of calcium ions by manganese ions and even after incubation. The change in absorption due to phosphate group, depicted in FTIR spectra, for incubated samples confirms growth of apatite on Mn-HAp surface. SEM/ EDAX studies suggest that Mn-HAp surface promotes the growth of apatite without changing its structure due to apatite nucleation and growth on the surface of Mn-HAp. The value of dielectric constant of Mn-HAp increases after incubation. Increase in period of immersion in m-SBF leads to decrease in dielectric constant of manganese exchanged hydroxyapatite. The photoluminescence (PL) study reveals that the Mn-HAp can be used stable and efficient blue luminescent material.


2013 ◽  
Vol 448-453 ◽  
pp. 3041-3045
Author(s):  
Fei Bi ◽  
Xiang Ting Dong ◽  
Jin Xian Wang ◽  
Gui Xia Liu ◽  
Wen Sheng Yu

PVP/[Y(NO3)3+Al (NO3)3] composite nanobelts were fabricated via electrospinning combined with sol-gel process and novel structure of Y3Al5O12(denoted as YAG for short) nanobelts have been obtained after calcination of the relevant composite nanobelts. The structural properties were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis indicated that the composite nanobelts were amorphous, and YAG nanobelts were cubic in structure with space group Ia3d. FTIR analysis manifested that pure YAG nanobelts were formed at 900oC. SEM analysis and histograms revealed that the width of the composite nanobelts and YAG nanobelts were 3.5 μm and 2.4 μm, and the thickness were 240 nm and 112 nm, respectively, under the 95% confidence level. The formation mechanism of YAG nanobelts was discussed in detail.


2013 ◽  
Vol 11 (9) ◽  
pp. 1439-1446 ◽  
Author(s):  
Lachezar Radev ◽  
Darina Zheleva ◽  
Irena Michailova

AbstractIn the present work Polyurethane (PU)/Bioglass (BG) composite materials were synthesized with different content of BG (10 and 20 mol.%) as filler. The 85S Bioglass was synthesized via polystep sol-gel method. The chemical composition of BG is 85SiO2-10CaO-5P2O5 (wt.%). The synthesis of PU was carried out by a two-step polyaddition reaction. The 85S BG was added in situ during the polymerization reaction. In vitro bioactivity of the prepared composites was examined in the presence of 1.5 SBF for 7 days in static conditions. The structure of synthesized PU/BG composites before and after in vitro test was determined by XRD, FTIR and SEM. XRD of the samples before in vitro test proved that the phase of γCa2P2O7 in the PU/20BG is visible. FTIR revealed the presence of urethane bond between OH-(from BG) and NCO groups (from PU). Based on FTIR results after in vitro test in 1.5 SBF solutions, A/B-carbonate containing hydroxyapatite (CO3HA) was formed. XRD proved that HA was formed on the surface of the samples, but Ca2P2O7 does not undergo any changes in the 1.5 SBF solution. SEM depicted the nano-HA agglomerated in spherical particles after immersion in 1.5 SBF for 7 days.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ekaterina V. Borisova ◽  
Alexey V. Ignatov ◽  
Eugeni I. Get'man ◽  
Stanislav N. Loboda ◽  
Lyudmyla I. Ardanova ◽  
...  

Sodium europium silicate, NaEu9(SiO4)6O2, with apatite structure has been obtained and studied using X-ray diffraction and SEM. It has been shown that sodium sublimation does not take place upon synthesis by the sol-gel method. Rietveld refinement has revealed that sodium atoms are ordered and occupy the 4f position. O(4) atoms not related to silicate ions are placed at the centers of Eu(2) triangles. DC and AC electric conductivity and activation energy have been determined for the compound studied.


2018 ◽  
Vol 225 ◽  
pp. 89-92 ◽  
Author(s):  
Mohammad Rafienia ◽  
Ashkan Bigham ◽  
Ahmad Saudi ◽  
Shahram Rahmati

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3738 ◽  
Author(s):  
A. Smalenskaite ◽  
M. M. Kaba ◽  
I. Grigoraviciute-Puroniene ◽  
L. Mikoliunaite ◽  
A. Zarkov ◽  
...  

In this study, new synthetic approaches for the preparation of thin films of Mg-Al layered double hydroxides (LDHs) have been developed. The LDHs were fabricated by reconstruction of mixed-metal oxides (MMOs) in deionized water. The MMOs were obtained by calcination of the precursor gels. Thin films of sol–gel-derived Mg-Al LDHs were deposited on silicon and stainless-steel substrates using the dip-coating technique by a single dipping process, and the deposited film was dried before the new layer was added. Each layer in the preparation of the Mg-Al LDH multilayers was separately annealed at 70 °C or 300 °C in air. Fabricated Mg-Al LDH coatings were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was discovered that the diffraction lines of Mg3Al LDH thin films are sharper and more intensive in the sample obtained on the silicon substrate, confirming a higher crystallinity of synthesized Mg3Al LDH. However, in both cases the single-phase crystalline Mg-Al LDHs have formed. To enhance the sol–gel processing, the viscosity of the precursor gel was increased by adding polyvinyl alcohol (PVA) solution. The LDH coatings could be used to protect different substrates from corrosion, as catalyst supports, and as drug-delivery systems in medicine.


2014 ◽  
Vol 631 ◽  
pp. 30-35 ◽  
Author(s):  
S. Solgi ◽  
M. Shahrezaee ◽  
A. Zamanian ◽  
T.S. Jafarzadeh Kashi ◽  
Majid Raz ◽  
...  

Bioactive glass of the type CaO–SrO–P2O5–SiO2was obtained by the sol-gel processing method. Three samples containing 0 mol%, 5 mol% and 10 mol% of SrO were synthesized. The obtained bioactive glasses were characterized by the techniques such as, X-ray diffraction (XRD) and scanning electron microscope (SEM) and the effect of SrO/CaO substitution on in vitro biological properties of the synthesized glasses were evaluated and biocompatibility of the samples was measured using MTT assay. The results showed that incorporation of Sr in the obtained glass network did not result in any structural alteration of it due to the similar role of SrO compared with that of CaO. In vitro experiments with human osteosarcoma cell lines (MG-63) and MTT assay indicated that bioactive glass incorporating 5 mol% of Sr in the composition is non-toxic and revealed good biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document