Sol-Gel Synthesis and Characterization of SiO2-CaO-P2O5-SrO Bioactive Glass: In Vitro Study

2014 ◽  
Vol 631 ◽  
pp. 30-35 ◽  
Author(s):  
S. Solgi ◽  
M. Shahrezaee ◽  
A. Zamanian ◽  
T.S. Jafarzadeh Kashi ◽  
Majid Raz ◽  
...  

Bioactive glass of the type CaO–SrO–P2O5–SiO2was obtained by the sol-gel processing method. Three samples containing 0 mol%, 5 mol% and 10 mol% of SrO were synthesized. The obtained bioactive glasses were characterized by the techniques such as, X-ray diffraction (XRD) and scanning electron microscope (SEM) and the effect of SrO/CaO substitution on in vitro biological properties of the synthesized glasses were evaluated and biocompatibility of the samples was measured using MTT assay. The results showed that incorporation of Sr in the obtained glass network did not result in any structural alteration of it due to the similar role of SrO compared with that of CaO. In vitro experiments with human osteosarcoma cell lines (MG-63) and MTT assay indicated that bioactive glass incorporating 5 mol% of Sr in the composition is non-toxic and revealed good biocompatibility.

2011 ◽  
Vol 493-494 ◽  
pp. 85-89 ◽  
Author(s):  
Viorica Simon ◽  
R. Ciceo Lucacel ◽  
I. Titorencu ◽  
V. Jinga

Lime phosphosilicate and soda lime phosphosilicate glasses prepared by sol-gel method were precursors of bioactive glass-ceramics. The structure of the samples and the distribution of the [SiO4] units was investigated by X-ray diffraction and infrared spectroscopy. Human osteosarcoma cell line (MG63) was used for the in vitro cellular response. DNA staining (Hoechst 33258) assay was performed for assessing samples colonization.


2020 ◽  
Vol 10 (7) ◽  
pp. 2360 ◽  
Author(s):  
Francesco Boschetto ◽  
Hoan Ngoc Doan ◽  
Phu Phong Vo ◽  
Matteo Zanocco ◽  
Wenliang Zhu ◽  
...  

This study investigated the efficiency of chitosan/polyethylene oxide (PEO)-based nanofibers with incorporated bioactive glass particles as a coating for titanium alloy, in order to improve the bacteriostatic behavior and, concurrently, promote the production of mineralized tissue. Nanofibers with and without bioglass powder were fabricated by electrospinning technique and characterized using several microscopic and spectroscopic techniques in order to study their morphological and physiochemical properties. Subsequently, the substrates were tested in vitro against Staphylococcus epidermidis and SaOS-2 human osteosarcoma cell line. After in vitro testing, viability and CFU counting assays combined with fluorescence microscopy showed a clear decrease in bacterial growth on all substrates with increasing time. However, this trend was stronger for substrates coated with nanofibers. Formation of mineralized matrix upon exposure to osteoblasts was confirmed by means of SEM/EDX and the content/distribution of osteocalcin and osteopontin estimated by fluorescence microscopy. Incorporation of bioglass promoted biomineralization and stimulated osteoblasts to produce a higher amount of bone extracellular matrix. The present results suggest that a chitosan/PEO/bioactive glass nanofiber composite applied as coating on titanium alloys could concurrently improve antibacterial and osteoconductive properties and could be a potential candidate for dental and orthopedic applications.


2013 ◽  
Vol 541 ◽  
pp. 41-50 ◽  
Author(s):  
Ilaria Cacciotti ◽  
Giorgia Lehmann ◽  
Antonella Camaioni ◽  
Alessandra Bianco

In this work, the sol-gel synthesis of AP40 bioactive glass system was reported. The obtained powder was fully characterised in terms of microstructure, composition and thermal behaviour by X-ray diffraction (XRD) measurements, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry and differential thermal analysis (TG-DTA).In vitrodissolution tests were performed in order to assess the degradation behaviour of sol-gel derived AP40 samples thermally treated at different temperatures. Finally, preliminary results on cytocompatibility are reported, based on bioresorption activity of human peripheral blood monocytes differentiated into osteoclasts on sintered disks.


2013 ◽  
Vol 467 ◽  
pp. 64-69 ◽  
Author(s):  
Nader Nezafati ◽  
Saeed Hesaraki ◽  
Mohammad-Reza Badr-Mohammadi

In the present research, strontium containing nanobioactive glass (NBG-Sr) was synthesized by sol-gel method. The morphology was analyzed by transmission electron microscope (TEM). Different amounts (0.5 to 5 wt%) of NBG-Sr were then added to biphasic calcium phosphate (BCP). They were sintered at different temperatures, i.e., 1100, 1200 and 1300 °C and changes in physical and mechanical properties were investigated. A sharp decrease in pore volume was observed as the temperature increased. The maximum bending strength (~45 MPa) was achieved for BCP which was mixed with 3 wt% NBG-Sr and sintered at 1200 °C. This value was approximately the same when it was sintered at 1300 °C. The bending strength failed when both lower and higher amounts of 3 wt% NBG-Sr were utilized. Therefore, sintering of composites at 1200 °C was economically reasonable. The X-ray results showed that NBG-Sr additive did not change the phase composition of BCP when it was heat treated at 1200 °C. The attachment and proliferation of rat calvarium-derived osteoblasts on samples sintered at 1200 °C were also evaluated by scanning electron microscopy (SEM). Based on cell studies, all NBG-Sr-added BCPs supported attachment and proliferation of osteoblastic cells. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties can be produced by using certain quantity of strontium-containing bioactive glass particles.


2021 ◽  
Vol 14 (6) ◽  
pp. 532
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Swee Keong Yeap ◽  
Mas Jaffri Masarudin ◽  
...  

Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.


2007 ◽  
Vol 361-363 ◽  
pp. 139-142 ◽  
Author(s):  
Xin Chang Shi ◽  
H.Z. Jiang ◽  
J. Xue ◽  
Yun Mao Liao ◽  
L.Y. Xiao ◽  
...  

In order to modify the biological properties of pure hydroxyapatite (HAp), two kinds of zinc-containing HAp, which had zinc content of 5.10wt% and 2.54wt%, respectively, were synthesized via sol-gel technique. The obtained coatings were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Then the antibacterial effects were evaluated through bacteriostatic test on Streptococcus mutans (S.mutans) in vitro and zinc ions releasing ability was investigated through detecting the zinc ions concentration by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained coatings were observed to possess typical apatite peaks in XRD patterns and high homogeneous and porous surfaces in SEM morphology. The coating layer demonstrated good releasing ability in Brain Heart Infusion (BHI) liquid and obviously inhibitory effects to the growth and proliferation of S. mutans. Based on the results obtained above, it is concluded that the sol-gel derived zinc-containing hydroxyapatite could be applied as an antibacterial effective biomaterial.


2013 ◽  
Vol 102 (7) ◽  
pp. 2383-2394 ◽  
Author(s):  
Justyna Pawlik ◽  
Magdalena Widziołek ◽  
Katarzyna Cholewa-Kowalska ◽  
Maria Łączka ◽  
Anna Maria Osyczka

Sign in / Sign up

Export Citation Format

Share Document