Accuracy of Additive Manufactured Parts

2015 ◽  
Vol 661 ◽  
pp. 113-118 ◽  
Author(s):  
Thomas Rainer Neitzert

Additive manufacturing processes and materials are described with respect to their ability to generate finished products. The accuracy of produced parts is seen as an important criterion for this technology to compete with subtractive or constant volume technologies. From the existing literature can be concluded process variation is high and part accuracy is not better then IT grade 9. The manufacturing process itself is complex and dependent on a number of machine, material and geometry parameters. A better understanding of the heat transfer within the product build environment will assist in the future to improve the process and therefore the resulting parts’ accuracy.

2021 ◽  
Vol 1 ◽  
pp. 323-332
Author(s):  
Priyabrata Rautray ◽  
Boris Eisenbart

AbstractNew technologies have always been disruptive for established systems and processes. Additive Manufacturing (AM) is proving to be one such process which has the potential to disrupt handicraft and its manufacturing processes. AM is customisable, adopt multiple materials and is not restricted by the manufacturing process. Our research discusses this global phenomenon with case studies to highlights the growth of a new kind of professionals known as ‘Digital Artisans’. These artisans will assimilate the latest technologies with the cultural practices of the societies to create a new genre of products. The evolution of such artisans will be majorly led by people who have an equal inclination towards art and science and can act as the bridge between the handicrafts and technology. The development of such artisans will be supported by academics that will serve as a cradle and expose them to AM, design and handicraft. Its will also help in paving the growth of contemporary artisans who will utilise the strength of algorithms, artificial intelligence, CAD software and traditional aesthetics to create handicrafts of the future.


Author(s):  
Jacob C. Snyder ◽  
Karen A. Thole

Abstract Turbine cooling is a prime application for additive manufacturing because it enables quick development and implementation of innovative designs optimized for efficient heat removal, especially at the micro-scale. At the micro-scale, however, the surface finish plays a significant role in the heat transfer and pressure loss of any cooling design. Previous research on additively manufactured cooling channels has shown the surface roughness increases both heat transfer and pressure loss to similar levels as highly-engineered turbine cooling schemes. What has not been shown, however, is whether opportunities exist to tailor additively manufactured surfaces through control of the process parameters to further enhance the desired heat transfer and pressure loss characteristics. The results presented in this paper uniquely show the potential of manipulating the parameters within the additive manufacturing process to control the surface morphology, directly influencing turbine cooling. To determine the effect of parameters on cooling performance, coupons were additively manufactured for common internal and external cooling methods using different laser powers, scan speeds, and scanning strategies. Internal and external cooling tests were performed at engine relevant conditions to measure appropriate metrics of performance. Results showed the process parameters have a significant impact on the surface morphology leading to differences in cooling performance. Specifically, internal and external cooling geometries react differently to changes in parameters, highlighting the opportunity to consider process parameters when implementing additive manufacturing for turbine cooling applications.


2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Seymur Hasanov ◽  
Suhas Alkunte ◽  
Mithila Rajeshirke ◽  
Ankit Gupta ◽  
Orkhan Huseynov ◽  
...  

Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the current challenges was also carried out to predict the future direction of MMAM processes. It was concluded that further research and development is needed in the design of multi-material interfaces, manufacturing processes and the material compatibility of MMAM parts.


Author(s):  
Andreas Schroeffer ◽  
Thomas Maciuga ◽  
Konstantin Struebig ◽  
Tim C. Lueth

Abstract The claim in additive manufacturing (AM) changes from simply producing prototypes as show objects to the fabrication of final parts and products in small volume batches. Thereby the focus is on freedom of material, dimensional accuracy and mechanical component properties. A novel extrusion-based AM technology has been developed focusing on these issues. The working principle is to form spheres from a thermoplastic polymer melt and build parts by single droplets. The material preprocessing is similar to the injection molding technology and enables a wide range of different thermoplastic polymers as build materials. With the droplet-based working principle high mechanical component properties and dimensional accuracy can be reached compared to similar processes. Further improvements to the process need a detailed knowledge of the physical effects during the build process. The temperature distribution during the manufacturing process determines at which temperature material is fused and how solidification takes place and shrinkage can occur or is suppressed. Thus, it has a significant influence on the mechanical properties and warpage effects of produced parts. In this work a thermal model is presented that describes the heat transfer during the build process. The necessary input data are the material properties and a print job description including the part geometry and building strategy. The basic idea is to simulate each single droplet deposition by applying a dynamic Finite Element Method. All relevant heat transfer effects are analyzed and represented in the model. The model was validated with measurements using a thermal imaging camera. Several measurements were performed during the build process and compared to the simulation results. A high accuracy could be reached with an average model error of about 4° Celsius and a maximal error of 10° Celsius.


Author(s):  
Keshavamurthy R. ◽  
Vijay Tambrallimath ◽  
Prabhakar Kuppahalli ◽  
Sekhar N.

Growth of nature is an additive process that gives sustainable existence to the structures developed; on the other hand, traditional manufacturing techniques can be wasteful as they are subtractive. Additive manufacturing produces almost nil waste and accordingly preserves raw materials resulting in cost reduction for the procurement of the same. It will also cut down on the carbon emissions that are usually generated from industrial manufacturing. Additive printed objects are lighter as well, making them more efficient, especially when used in the automobile and aerospace industry. Further, the intrinsic characteristics and the promising merits of additive manufacturing process are expected to provide a solution to improve the sustainability of the process. This chapter comprehensively reports on various additive manufacturing processes and their sustainable applications for green technology. The state of the art, opportunities, and future, related to sustainable applications of additive manufacturing have been presented at length.


Author(s):  
Anoop Verma ◽  
Rahul Rai

Additive manufacturing processes are capable of printing parts with any shape and complexity. The parts fabricated with additive manufacturing processes requires minimum human intervention. Process planning decisions play an important role in making sure the fabricated parts meets the desired specification, including the build time and cost. A quick and unified approach to quantify the manufacturing build time, accuracy, and cost in real time is lacking. In the present research, a generic and near real-time framework for unified additive manufacturing process planning is presented. We have developed computational geometric solutions to estimate tight upper bound of manufacturing process planning decisions that can be analyzed in almost real time. Results of developed computational approach are compared against the optimized process plans to ensure its applicability. Case studies comprising of numerous parts with varying shape, and application area is also outlined.


Author(s):  
Kathryn L. Kirsch ◽  
Karen A. Thole

The degree of complexity in internal cooling designs is tied to the capabilities of the manufacturing process. Additive manufacturing grants designers increased freedom while offering adequate reproducibility of micro-sized, unconventional features that can be used to cool the skin of gas turbine components. One such desirable feature can be sourced from nature; a common characteristic of natural transport systems is a network of communicating channels. In an effort to create an engineered design that utilizes the benefits of those natural systems, the current study presents wavy microchannels that were connected using branches. Two different wavelength baseline configurations were designed, then each were numerically optimized using a commercial adjoint-based method. Three objective functions were posed to (1) minimize pressure loss, (2) maximize heat transfer, and (3) maximize the ratio of heat transfer to pressure loss. All baseline and optimized microchannels were manufactured using Laser Powder Bed Fusion for experimental investigation; pressure loss and heat transfer data were collected over a range of Reynolds numbers. The additive manufacturing process reproduced the desired optimized geometries faithfully. Surface roughness, however, strongly influenced the experimental results; successful replication of the intended flow and heat transfer performance was tied to the optimized design intent. Even still, certain test coupons yielded performances that correlated well with the simulation results.


Author(s):  
Seymur Hasanov ◽  
Suhas Alkunte ◽  
Mithila Rajeshirke ◽  
Ankit Gupta ◽  
Orkhan Huseynov ◽  
...  

Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in automotive, aerospace, biomedical and dentistry field were demonstrated. Investigation on the current challenges were also carried out to predict the future direction of MMAM processes. It is concluded that the further research and development needed in the design of multi-material interfaces, manufacturing processes and material compatibility of MMAM parts are necessary.


Sign in / Sign up

Export Citation Format

Share Document