Influence of High-Cycle Fatigue on Crater Wear Characteristics of Cemented Carbide Tool

2015 ◽  
Vol 664 ◽  
pp. 326-336 ◽  
Author(s):  
Xiao Qi Song ◽  
Junnosuke Saigawa ◽  
Tohru Ihara

Recently, in order to make positively use of the effect of adhesive layer, which works as Build-up edge or Belag on the tool surface during machining operation, there have many investigations on the technique to reduce the wear of cutting tool. However, the mechanism of wear on the rake face is unknown and the reason why the adhesive layer can resist the abrasion is also unclear.This study aims to propose a new crater high-cycle fatigue wear model depending on the tool adhesion model established by the surface cluster on the interface between the Tool-Work Piece. By using this model we can elucidate the mechanism of adhesive layer. When the chip flows on the rake face, the commensurate phase occurs in the surface cluster on the interface, and the surface cluster slides in the similar form of dislocation. At the same time, the strong chemical bonding among the surface clusters becomes the repeat force which can result in the fatigue failure on the tool, and the tool crater wear happens. The energy dissipation process associates with the vibration of cluster, which increases the tool temperature rapidly. Therefore, the crater wear is a damage process on the tool with the high-temperature and high-cycle fatigue.In this study, the mechanism of crater wear when the cemented carbide cut the carbon steel was investigated using the adhesion cluster model, and the crater wear model was proposed to estimate the properties of the adhesive layer.

1993 ◽  
Vol 60 (1) ◽  
pp. 85-92 ◽  
Author(s):  
B. S. Hockenhull ◽  
E. M. Kopalinsky ◽  
P. L. B. Oxley

The frictional force when a hard surface slides over a relatively soft one is explained as the force needed to push waves of plastically deformed material along the soft surface ahead of asperities on the hard one. Using plastic strain increments determined from the wave model and assuming that wear occurs as a result of low-cycle fatigue, predictions are made of wear which take account of the surface roughness and lubrication conditions and a comparison is made with experimental results. Metallographic results are given which support the assumption that low cycle fatigue is important in causing surface damage and hence wear. These results also show that ironing of the surface by the passage of waves leads to surface damage and wear. It is concluded that in future work account will have to be taken of both low-cycle fatigue and ironing in making wear predictions.


2014 ◽  
Vol 52 (4) ◽  
pp. 283-291 ◽  
Author(s):  
Gwan Yeong Kim ◽  
Kyu Sik Kim ◽  
Joong Cheol Park ◽  
Shae Kwang Kim ◽  
Young Ok Yoon ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2245
Author(s):  
Michael Fitzka ◽  
Bernd M. Schönbauer ◽  
Robert K. Rhein ◽  
Niloofar Sanaei ◽  
Shahab Zekriardehani ◽  
...  

Ultrasonic fatigue testing is an increasingly used method to study the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) properties of materials. Specimens are cycled at an ultrasonic frequency, which leads to a drastic reduction of testing times. This work focused on summarising the current understanding, based on literature data and original work, whether and how fatigue properties measured with ultrasonic and conventional equipment are comparable. Aluminium alloys are not strain-rate sensitive. A weaker influence of air humidity at ultrasonic frequencies may lead to prolonged lifetimes in some alloys, and tests in high humidity or distilled water can better approximate environmental conditions at low frequencies. High-strength steels are insensitive to the cycling frequency. Strain rate sensitivity of ferrite causes prolonged lifetimes in those steels that show crack initiation in the ferritic phase. Austenitic stainless steels are less prone to frequency effects. Fatigue properties of titanium alloys and nickel alloys are insensitive to testing frequency. Limited data for magnesium alloys and graphite suggest no frequency influence. Ultrasonic fatigue tests of a glass fibre-reinforced polymer delivered comparable lifetimes to servo-hydraulic tests, suggesting that high-frequency testing is, in principle, applicable to fibre-reinforced polymer composites. The use of equipment with closed-loop control of vibration amplitude and resonance frequency is strongly advised since this guarantees high accuracy and reproducibility of ultrasonic tests. Pulsed loading and appropriate cooling serve to avoid specimen heating.


Sign in / Sign up

Export Citation Format

Share Document