Researches of Advanced Thermal Insulating Materials for Improving the Building Energy Efficiency

2016 ◽  
Vol 683 ◽  
pp. 617-625
Author(s):  
Maxim Morozov ◽  
Pavel A. Strizhak

A complex model of building was developed by using Matlab. The model allows conducting for a wide range of research related to improving the energy efficiency of buildings. In this work the investigations of energy efficiency of several advanced insulation materials, which is characterized by different thermal characteristics, were carried out. Conclusions about the impact of the thermal protective envelope on the room thermal regime were made. Prognostic heat consumptions values of rooms with different characteristics of thermal insulation materials and main base-load envelopes were determined. Researches were conducted for the winter climatic conditions of Western Siberia: the average daily outdoor temperatures are -22 °C and -12 °C, the amplitude of temperature oscillation is 8 °C

2022 ◽  
Vol 906 ◽  
pp. 99-106
Author(s):  
Siranush Egnatosyan ◽  
David Hakobyan ◽  
Spartak Sargsyan

The use of thermal insulation materials to reduce the heating and cooling demand of the building in order to provide energy efficiency is the main solution. But there is a wide range of these products on the market and, therefore, the choice and application of these materials is a rather difficult task, since many factors must be taken into account, such as environmental safety, cost, durability, climatic conditions, application technology, etc. Basically, comfort microclimate systems are designed based on normative standards, where the thickness of the thermal insulation material is selected depending on the required heat transfer resistance. These values are calculated taking into account climate conditions, that is the duration of the heating period, as well as taking into account sanitary and hygienic requirements. This article discusses the thermal performance of building materials, and also provides a comparative analysis of the use of thermal insulation materials depending on climatic factors and on the system providing comfort microclimate. Based on the calculations by mathematical modeling and optimization, it is advisable to choose the thickness of the thermal insulation, taking into account the capital and operating costs of the comfort microclimate systems. Comparing the optimization data with the normative one, the energy efficiency of the building increases by 50-70% when applying the optimal thickness of the thermal insulation layer, and when the thermal insulation layer is increased, the thermal performance of the enclosing structures has improved by 30%, which contributes to energy saving.


2021 ◽  
pp. 45-52
Author(s):  
G.I. Petrov ◽  
V.N. Kornienko ◽  
A.G. Donetskikh

Improving energy efficiency and energy saving in refrigeration technology depends largely on the use of modern thermal insulation materials in the thermal insulation structures of refrigeration pipelines. The article presents a comparative analysis of the thermal characteristics and operational properties of heat-insulating materials used in refrigeration. The features of RUFLEX thermal insulation materials based on foamed synthetic rubber produced from domestic raw materials and their compliance with the requirements of energy efficiency, durability, operational reliability and safety are considered.


2014 ◽  
Vol 899 ◽  
pp. 62-65 ◽  
Author(s):  
Rastislav Ingeli ◽  
Boris Vavrovič ◽  
Miroslav Čekon

Energy demand reduction in buildings is an important measure to achieve climate change mitigation. It is essential to minimize heat losses in designing phase in accordance of building energy efficiency. For building energy efficiency in a mild climate zone, a large part of the heating demand is caused by transmission losses through the building envelope. Building envelopes with high thermal resistance are typical for low-energy buildings in general. In this sense thermal bridges impact increases by using of greater thickness of thermal insulation. This paper is focused on thermal bridges minimizing through typical system details in buildings. The impact of thermal bridges was studied by comparative calculations for a case study of building with different amounts of thermal insulation. The calculated results represent a percentage distribution of heat loss through typical building components in correlation of various thicknesses of their thermal insulations.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Annalisa Andaloro ◽  
Graziano Salvalai ◽  
Gabriele Fregonese ◽  
Linda Tso ◽  
Giulia Paoletti

Energy efficiency in the building sector is a priority of the EU Commission to achieve carbon neutrality by 2050. Renovation of the existing buildings, which are currently responsible for approximately 40% of EU energy consumption and 36% of the greenhouse gas emissions can lead to significant energy savings. This paper presents the EEnvest calculation method for evaluating the financial impacts of technical risks related to energy-efficient renovation of commercial office buildings. The evaluation method aims to increase investors’ confidence and boost investments in the renovation of the existing building. Through a series of Key Performance Indicators (KPI), the technical and financial risks impact is evaluated. The results are strictly connected to building features, climatic conditions, solution sets and mitigation measures specific to the building energy efficiency project.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2745 ◽  
Author(s):  
Fotiou ◽  
Vita ◽  
Capros

The paper presents a newly developed economic-engineering model of the buildings sector and its implementation for all the European Union (EU) Member States (MS), designed to study in detail ambitious energy efficiency strategies and policies, in the context of deep decarbonisation in the long term. The model has been used to support the impact assessment study that accompanied the European Commission’s communication “A Clear Planet for All”, in November 2018. The model covers all EU countries with a fine resolution of building types, and represents agent decision-making in a complex and dynamic economic-engineering mathematical framework. Emphasis is given to behaviours driving the energy renovation of buildings and the ensuing choice of equipment for heating and cooling. The model represents several market and non-market policies that can influence energy decisions in buildings and promote deep energy renovation. Moreover, the paper presents key applications for supporting policies targeting ambitious reduction of energy consumption and carbon emissions in buildings across Europe. The results illustrate that the achievement of ambitious energy-efficiency targets in the long-term heavily depends on pursuing a fast and extensive renovation of existing buildings, at annual rates between 1.21% and 1.77% for the residential sector and between 0.92% to 1.35% for the services sector. In both cases, the renovation rates are far higher past trends. Strong policies aimed at removing non-market barriers are deemed necessary. Electrification constitutes a reasonable choice for deeply renovated buildings and, as a result, almost 50% of households chooses electric heating over gas heating in the long term. However, heat pumps need to exploit further their learning potential to be economical and implementable for the various climatic conditions in Europe. The results also show that the cost impacts are modest even if renovation and decarbonisation in buildings develop ambitiously in the EU. The reduced energy bills due to energy savings can almost offset the increasing capital expenditures. Fundraising difficulties and the cost of capital are, however, of concern.


2019 ◽  
Vol 65 (6) ◽  
pp. 713-724 ◽  
Author(s):  
Lotanna M Nneji ◽  
Adeniyi C Adeola ◽  
Fang Yan ◽  
Agboola O Okeyoyin ◽  
Ojo C Oladipo ◽  
...  

AbstractNigeria is an Afrotropical region with considerable ecological heterogeneity and levels of biotic endemism. Among its vertebrate fauna, reptiles have broad distributions, thus, they constitute a compelling system for assessing the impact of ecological variation and geographic isolation on species diversification. The red-headed rock agama, Agama agama, lives in a wide range of habitats and, thus, it may show genetic structuring and diversification. Herein, we tested the hypothesis that ecology affects its genetic structure and population divergence. Bayesian inference phylogenetic analysis of a mitochondrial DNA (mtDNA) gene recovered four well-supported matrilines with strong evidence of genetic structuring consistent with eco-geographic regions. Genetic differences among populations based on the mtDNA also correlated with geographic distance. The ecological niche model for the matrilines had a good fit and robust performance. Population divergence along the environmental axes was associated with climatic conditions, and temperature ranked highest among all environmental variables for forest specialists, while precipitation ranked highest for the forest/derived savanna, and savanna specialists. Our results cannot reject the hypothesis that niche conservatism promotes geographic isolation of the western populations of Nigerian A. agama. Thus, ecological gradients and geographic isolation impact the genetic structure and population divergence of the lizards. This species might be facing threats due to recent habitat fragmentation, especially in western Nigeria. Conservation actions appear necessary.


2014 ◽  
Vol 644-650 ◽  
pp. 6145-6148
Author(s):  
Lin Ling He ◽  
Chao Zhang

Extensive public participation activities conducive to the smooth commencement of building energy efficiency, public participation and awareness building energy will determine the strength of the effect of the implementation of building energy efficiency. Therefore, this paper is based on empirical investigation of Xi'an, the use of factor analysis to explore the underlying causes of the impact of public participation in the construction of energy-saving consciousness.


2020 ◽  
Vol 10 (10) ◽  
pp. 3589 ◽  
Author(s):  
Mahsa Nazeriye ◽  
Abdorrahman Haeri ◽  
Francisco Martínez-Álvarez

Human living could become very difficult due to a lack of energy. The household sector plays a significant role in energy consumption. Trying to optimize and achieve efficient energy consumption can lead to large-scale energy savings. The aim of this paper is to identify the equipment and property affecting energy efficiency and consumption in residential homes. For this purpose, a hybrid data-mining approach based on K-means algorithms and decision trees is presented. To analyze the approach, data is modeled once using the approach and then without it. A data set of residential homes of England and Wales is arranged in low, medium and high consumption clusters. The C5.0 algorithm is run on each cluster to extract factors affecting energy efficiency. The comparison of the modeling results, and also their accuracy, prove that the approach employed has the ability to extract the findings with greater accuracy and detail than in other cases. The installation of boilers, using cavity walls, and installing insulation could improve energy efficiency. Old homes and the usage of economy 7 electricity have an unfavorable effect on energy efficiency, but the approach shows that each cluster behaved differently in these factors related to energy efficiency and has unique results.


2016 ◽  
Vol 11 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Nathalie Ollat ◽  
Jean-Marc Touzard ◽  
Cornelis van Leeuwen

AbstractClimate change will have a profound effect on vine growing worldwide. Wine quality will also be affected, which will raise economic issues. Possible adaptations may result from changes in plant material, viticultural techniques, and the wine-making process. Relocation of vineyards to cooler areas and increased irrigation are other options, but they may result in potential conflicts for land and water use. Grapes are currently grown in many regions around the world, and growers have adapted their practices to the wide range of climatic conditions that can be found among or inside these areas. This knowledge is precious for identifying potential adaptations to climate change. Because climate change affects all activities linked to wine production (grape growing, wine making, wine economics, and environmental issues), multidisciplinary research is needed to guide growers to continue to produce high-quality wines in an economical and environmentally sustainable way. An example of such an interdisciplinary study is the French LACCAVE (long-term adaptation to climate change in viticulture and enology) project, in which researchers from 23 institutes work together on all issues related to the impact of climate change on wine production. (JEL Classifications: Q1, Q5)


2005 ◽  
Vol 127 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Abdalla M. Al-Amiri ◽  
Montaser M. Zamzam

The current study is centered on assessing the benefits of incorporating combustion turbine inlet air-cooling systems into a reference combustion turbine plant, which is based on a simple cycle under base load mode. Actual climatic conditions of a selected site were examined thoroughly to identify the different governing weather patterns. The main performance characteristics of both refrigerative and evaporative cooling systems were explored by examining the effect of several parameters including inlet air temperature, airflow-to-turbine output ratio, coefficient of performance (for refrigerative cooling systems), and evaporative degree hours (for evaporative cooling systems). The impact of these parameters was presented against the annual gross energy increase, average heat rate reduction, cooling load requirements and net power increase. Finally, a feasibility design chart was constructed to outline the economic returns of employing a refrigerative cooling unit against different prescribed inlet air temperature values using a wide range of combustion turbine mass flow rates.


Sign in / Sign up

Export Citation Format

Share Document