Climate Change Impacts and Adaptations: New Challenges for the Wine Industry

2016 ◽  
Vol 11 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Nathalie Ollat ◽  
Jean-Marc Touzard ◽  
Cornelis van Leeuwen

AbstractClimate change will have a profound effect on vine growing worldwide. Wine quality will also be affected, which will raise economic issues. Possible adaptations may result from changes in plant material, viticultural techniques, and the wine-making process. Relocation of vineyards to cooler areas and increased irrigation are other options, but they may result in potential conflicts for land and water use. Grapes are currently grown in many regions around the world, and growers have adapted their practices to the wide range of climatic conditions that can be found among or inside these areas. This knowledge is precious for identifying potential adaptations to climate change. Because climate change affects all activities linked to wine production (grape growing, wine making, wine economics, and environmental issues), multidisciplinary research is needed to guide growers to continue to produce high-quality wines in an economical and environmentally sustainable way. An example of such an interdisciplinary study is the French LACCAVE (long-term adaptation to climate change in viticulture and enology) project, in which researchers from 23 institutes work together on all issues related to the impact of climate change on wine production. (JEL Classifications: Q1, Q5)

OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 59 ◽  
Author(s):  
Nathalie Ollat ◽  
Cornelis Van Leeuwen ◽  
Iñaki Garcia de Cortazar-Atauri ◽  
Jean-Marc Touzard

<p>Grape production, wine quality, climatic conditions and geographical origins are closely related, making ongoing climate change a quite challenging issue for this economic sector. How will climatic conditions be affected locally ? How will local climate interact with topography, resulting in high climatic variability at vineyard scale ? How will vine performance, berry composition and wine quality be modified ? And what can be done to adapt vine growing and wine making practices to these new conditions ? These are the key questions the wine industry has to address in the following decades. In this context, it is obvious that this issue will require the development of close collaboration between actors, including producers and wine makers, extension services, marketing, policy makers and scientists. For the scientific community, addressing the climate change issue requires multidisciplinary studies and new scientific approaches.</p>


OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 59-60 ◽  
Author(s):  
Nathalie Ollat ◽  
Cornelis Van Leeuwen ◽  
Iñaki Garcia de Cortazar-Atauri ◽  
Jean-Marc Touzard

Grape production, wine quality, climatic conditions and geographical origins are closely related, making ongoing climate change a quite challenging issue for this economic sector. How will climatic conditions be affected locally ? How will local climate interact with topography, resulting in high climatic variability at vineyard scale ? How will vine performance, berry composition and wine quality be modified ? And what can be done to adapt vine growing and wine making practices to these new conditions ? These are the key questions the wine industry has to address in the following decades. In this context, it is obvious that this issue will require the development of close collaboration between actors, including producers and wine makers, extension services, marketing, policy makers and scientists. For the scientific community, addressing the climate change issue requires multidisciplinary studies and new scientific approaches.


2021 ◽  
Author(s):  
Laura Massano ◽  
Giorgia Fosser ◽  
Marco Gaetani

&lt;p&gt;In Italy the wine industry is an economic asset representing the 8% of the annual turnover of the Food &amp; Beverage sector, according to Unicredit Industry Book 2019. Viticulture is strongly influenced by weather and climate, and winegrowers in Europe have already experienced the impact of climate change in terms of more frequent drought periods, warmer and longer growing seasons and an increased frequency of weather extremes. These changes impact on both yield production and wine quality.&lt;/p&gt;&lt;p&gt;Our study aims to understand the impact of climate change on wine production, to estimate the risks associated with climate factors and to suggest appropriate adaptation measurement. The weather variables that most influence grape growth are: temperature, precipitation and evapotranspiration. Starting for these variables we calculate a range of bioclimatic indices, selected following the International Organisation of Vine and Wine Guidelines (OIV), and correlate these with wine productivity data. According to the values of different indices it is possible to determine the more suitable areas for wine production, where we expect higher productivity, although the climate is not the only factor influencing yield.&lt;/p&gt;&lt;p&gt;Using the convection-permitting models (CPMs &amp;#8211; 2.2 horizontal resolution) we investigate how the bioclimatic indices changed in the last 20 years, and the impact of this change on grapes productivity. We look at possible climate trends and at the variation in the frequency distribution of extreme weather events. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of surface and orography field, explicitly resolve deep convection and show an improved representation of extremes events. In our study, we compare CPMs with regional climate models (RCMs &amp;#8211; 12 km horizontal resolution) to evaluate the possible added value of high resolution models for impact studies. To compare models' output to observation the same analysis it carried out using E-OBS dataset.&lt;/p&gt;&lt;p&gt;Through our impact study, we aim to provide a tool that winegrower and stakeholders involved in the wine business can use to make their activities more sustainable and more resilient to climate change.&lt;/p&gt;


2016 ◽  
Vol 11 (1) ◽  
pp. 66-68 ◽  
Author(s):  
Marco Bindi ◽  
Paulo A.L.D. Nunes

This special symposium focuses on the analysis of climate change impacts on the spatial dimension of vineyard land use. This includes the analysis of projections of current vineyard areas that are lost due to climate change, those that are retained despite climate change, and new vineyard areas that are created due to climate change. The analysis explores the use of GIS over regional and global scales. Furthermore, this symposium sheds light on the socioeconomic dimension of climate change impacts on the wine industry and viticulture by exploring the use of an ecosystem service approach. Such an economic sector is responsible for the provision of a wide range of cobenefits in addition to wine products. These include biodiversity protection and cultural services, including landscape values and ecotourism benefits (see Nunes and Loureiro, forthcoming). In this context, this symposium endorses the ecosystem service approach to the management of vineyards as a regional strategic plan to promote sustainable development. This embraces a broad range of issues including (1) the improvement of people's quality of life; (2) the increase of prospects for more jobs in rural areas; and (3) the protection of regional commons, including both biodiversity and cultural heritage–oriented commons.


OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 147 ◽  
Author(s):  
Cornelis Van Leeuwen ◽  
Agnès Destrac-Irvine

<p style="text-align: justify;"><strong>Aim:</strong> Major effects of climate change are an increase in temperature, a modification in rainfall patterns and an increase in incoming radiations, in particular UV-Bs. Grapevines are highly sensitive to climatic conditions. Hence, plant development, grape ripening and grape composition at ripeness are modified by climate change. Some of these changes are already visible and will be amplified over the coming decades; other effects, although not yet measurable, can be predicted by modeling. The objective of this paper is to assess which modifications in wine quality and typicity can be expected and what levers growers can implement to adapt to this changing situation. </p><p style="text-align: justify;"><strong>Methods and results:</strong> This paper focusses on the effect of temperature, vine water status and UV-B radiation in viticulture. Vine phenology is driven by temperacture. A significant advance in phenology (i.e. budburst, flowering and veraison dates) has been observed since the early 1980’s in most winegrowing regions. The combined effect of advanced phenology and increased temperatures results in warmer conditions during grape ripening. In these conditions, grapes contain more sugar and less organic acids. Composition in secondary metabolites, and in particular aromas and aroma precursors, is dramatically changed. Increased drought, because of lower summer rain and/or because of higher reference evapotranspiration (ET<sub>0</sub>), induces earlier shoot growth cessation, reduced berry size, increased content in skin phenolic compounds, lower malic acid concentrations and modified aroma and aroma precursor profiles. Increased UV-B radiation enhances the accumulation of skin phenolics and modifies aroma and aroma precursor profiles. Over the next decades, an amplification of these trends is highly likely. Major adaptations can be reached though modifications in plant material (grapevine varieties, clones and root stocks), vineyard management techniques (grapevine architecture, canopy management, harvest dates, vineyard floor management, timing of harvest, irrigation) or site selection (altitude, aspect, soil water holding capacity).</p><p style="text-align: justify;"> <strong>Conclusion:</strong> Climate change will induce changes in grape composition which will modify wine quality and typicity. However, these modifications can be limited through adaptations in the vineyard.</p><p style="text-align: justify;"><strong>Significance and impact of the study:</strong>  This study assesses the impact of major climatic parameters (temperature, water and radiation) on vine physiology and grape ripening. It addresses the issue of how the expected changes under climate change will impact viticulture. It is shown that appropriate levers do exist to allow growers to adapt to this new situation. Among these, modifications in plant material and viticultural techniques are the most promising tools.</p><div> </div>


Author(s):  
K. Nivedita Priyadarshini ◽  
S. A. Rahaman ◽  
S. Nithesh Nirmal ◽  
R. Jegankumar ◽  
P. Masilamani

<p><strong>Abstract.</strong> Climate change impacts on watershed ecosystems and hydrologic processes are complex. The key significant parameters responsible for balancing the watershed ecosystems are temperature and rainfall. Though these parameters are uncertain, they play a prime role in the projections of dimensional climate change studies. The impact of climate change is more dependent on temperature and precipitation which contributes at a larger magnitude for characterising global warming issues. This paper aims to forecast the variations of temperature and precipitation during the period of 2020&amp;ndash;2050 for the northern part of Thenpennar sub basin. This study is modelled using SWAT (Soil and Water Assessment Tool) &amp;ndash; a scale model developed to predict the impact of changes that occurs in land, soil and water over a period of time. This study is validated using the base period from 1980&amp;ndash;2000 which shows the distribution of rainfall and temperature among 38 watersheds. The results from this study show that there is a decrease in the rainfall for a maximum of about 20% in the month of December during the predicted period of 2020 and 2050. This study assesses the possible adverse impact of climate change on temperature and precipitation of Thenpennai sub-basin. This kind of predictions will help the government agencies, rulers and decision makers in policy making and implementing the adaptation strategies for the changing climatic conditions.</p>


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 354
Author(s):  
Ludovica Maria Campagna ◽  
Francesco Fiorito

The body of literature on climate change impacts on building energy consumption is rising, driven by the urgency to implement adaptation measures. Nevertheless, the multitude of prediction methodologies, future scenarios, as well as climate zones investigated, results in a wide range of expected changes. For these reasons, the present review aims to map climate change impacts on building energy consumption from a quantitative perspective and to identify potential relationships between energy variation and a series of variables that could affect them, including heating and cooling degree-days (HDDs and CDDs), reference period, future time slices and IPCC emission scenarios, by means of statistical techniques. In addition, an overview of the main characteristics of the studies related to locations investigated, building types and methodological approaches are given. To sum up, global warming leads to: (i) decrease in heating consumptions; (ii) increase in cooling consumption; (iii) growth in total consumptions, with notable differences between climate zones. No strong correlation between the parameters was found, although a moderate linear correlation was identified between heating variation and HDDs, and total variation and HDDs. The great variability of the collected data demonstrates the importance of increasing specific impact studies, required to identify appropriate adaptation strategies.


2016 ◽  
Vol 11 (1) ◽  
pp. 150-167 ◽  
Author(s):  
Cornelis van Leeuwen ◽  
Philippe Darriet

AbstractClimate change is a major challenge in wine production. Temperatures are increasing worldwide, and most regions are exposed to water deficits more frequently. Higher temperatures trigger advanced phenology. This shifts the ripening phase to warmer periods in the summer, which will affect grape composition, in particular with respect to aroma compounds. Increased water stress reduces yields and modifies fruit composition. The frequency of extreme climatic events (hail, flooding) is likely to increase. Depending on the region and the amount of change, this may have positive or negative implications on wine quality. Adaptation strategies are needed to continue to produce high-quality wines and to preserve their typicity according to their origin in a changing climate. The choice of plant material is a valuable resource to implement these strategies. (JEL Classifications: Q13, Q54)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangam Shrestha ◽  
Deg-Hyo Bae ◽  
Panha Hok ◽  
Suwas Ghimire ◽  
Yadu Pokhrel

AbstractThe diverse impacts of anthropogenic climate change in the spatiotemporal distribution of global freshwater are generally addressed through global scale studies, which suffer from uncertainties arising from coarse spatial resolution. Multi-catchment, regional studies provide fine-grained details of these impacts but remain less explored. Here, we present a comprehensive analysis of climate change impacts on the hydrology of 19 river basins from different geographical and climatic conditions in South and Southeast Asia. We find that these two regions will get warmer (1.5 to 7.8 °C) and wetter (− 3.4 to 46.2%) with the expected increment in river flow (− 18.5 to 109%) at the end of the twenty-first century under climate change. An increase in seasonal hydro-climatic extremes in South Asia and the rising intensity of hydro-climatic extremes during only one season in Southeast Asia illustrates high spatiotemporal variability in the impact of climate change and augments the importance of similar studies on a larger scale for broader understanding.


OENO One ◽  
2016 ◽  
Vol 50 (3) ◽  
Author(s):  
Eric Duchene

<p style="text-align: justify;">Climate change is modifying the environmental conditions in all the vineyards across the world. The expected effects on grape and wine production can be positive in some grape growing regions, but under warmer or dryer conditions the volume and quality of the wines produced can be impaired. Adaptation to new climatic conditions includes changes in the cultivation areas, changes in the vineyard or cellar practices, and use of new rootstock × scion combinations. In this article, we provide an overview of the possible effects of climate change on grapevine physiology and berry quality and we describe the more important traits and the genetic variability that can be used in the adaptation process. We also present the modern techniques that can be used by researchers to identify the links between genomic information and behaviors in the field. Finally, we discuss the existing opportunities in the present grapevine collections and the strategies that can be used by breeders to create new varieties.</p>


Sign in / Sign up

Export Citation Format

Share Document