Systematic Assessment of Combustion Turbine Inlet Air-Cooling Techniques

2005 ◽  
Vol 127 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Abdalla M. Al-Amiri ◽  
Montaser M. Zamzam

The current study is centered on assessing the benefits of incorporating combustion turbine inlet air-cooling systems into a reference combustion turbine plant, which is based on a simple cycle under base load mode. Actual climatic conditions of a selected site were examined thoroughly to identify the different governing weather patterns. The main performance characteristics of both refrigerative and evaporative cooling systems were explored by examining the effect of several parameters including inlet air temperature, airflow-to-turbine output ratio, coefficient of performance (for refrigerative cooling systems), and evaporative degree hours (for evaporative cooling systems). The impact of these parameters was presented against the annual gross energy increase, average heat rate reduction, cooling load requirements and net power increase. Finally, a feasibility design chart was constructed to outline the economic returns of employing a refrigerative cooling unit against different prescribed inlet air temperature values using a wide range of combustion turbine mass flow rates.

Author(s):  
Montaser M. Zamzam ◽  
Abdalla M. Al-Amiri

Combustion turbine inlet air-cooling systems (CTIACS) have been implemented in various regions around the globe and have displayed proven results in terms of their effectiveness and economic feasibility. Nonetheless, these systems have been rarely employed in the Arabian Gulf region with such existing installations are still undergoing continuous evaluation. The main objective of this study is to highlight the associated benefits of employing a CTIACS option in UAE. This is achieved by first exploring the weather patterns in UAE in order to propose proper weather design conditions. Moreover, the impact of a CTIACS is presented, for a prescribed inlet air temperature, on the annual gross energy increase, average heat rate reduction, cooling load requirements and net power increase. Finally, a combustion turbine unit with a relatively small mass flow rate is shown to be very much feasible economically even upon reducing inlet air temperature below the ISO rating.


Author(s):  
Hany A. Al-Ansary

Cooling turbine inlet air is a proven method of increasing turbine power output, especially during peak summer demand. It is estimated that turbine power output can increase by as much as 0.7% for every 1°C drop in inlet air temperature. Two inlet air cooling systems are widely used: evaporative cooling systems and chiller systems. Evaporative cooling is economical and uncomplicated, but its efficiency can significantly drop if the relative humidity is high. There is also a potential for excessive wear of compressor blades if water droplets are carried into the compressor section. On the other hand, chiller systems have the advantage of being independent of humidity and do not have the potential to cause damage to compressor blades. However, chiller systems consume power and cause a larger pressure drop than evaporative coolers. In this work, the possibility of using an ejector refrigeration system to cool turbine inlet air is explored. These systems are low-maintenance, fluid-driven, heat-operated devices that can use part of the turbine exhaust flow as the heat source for running the cycle. These systems require only pump power to feed liquid refrigerant to the vapor generator, making the power consumption potentially lower than conventional chiller systems. Using thermodynamic analysis, this paper compares the performance of ejector refrigeration systems with that of chiller systems based primarily on their power consumption. Performance characteristics for the ejector system are obtained through a CFD model that uses a real-gas model for R-134a. Published data on the performance of a commercial gas turbine is also considered. The power consumption of ejector refrigeration systems is found to be significantly smaller than that of vapor compression systems, with savings ranging from 19% to 80%. Power consumption is also found to be small compared to the boost in turbine power that is obtained. The percentage of waste heat needed to operate the ejector refrigeration system is found to be generally less than 25%.


Author(s):  
Rahmat Iman Mainil ◽  
Ahmad Wisnu Sulaiman ◽  
Afdhal Kurniawan Mainil ◽  
Azridjal Aziz

The increase of condenser temperature and pressure in air-conditioning leads to decreased cooling capacity and the increase of power consumption. Evaporative cooling could improve the thermal performance of the system. In this study, the evaporative cooling module was installed before the condenser to reduce the inlet air temperature to the condenser unit. The impact of condenser air temperature on the air conditioning system's overall performance was determined by varying the cooling pad discharge water flowrate of 880, 1040, and 1200 mL/min. The cooling load of 2000 W was employed in this experiment. The obtained results were compared with the air conditioning without an evaporative cooling module. It shows that the coefficient of performance (COP) increases with the increase of discharge water flow rate. The highest COP obtained is 7.09 at the flow rate of 1200 mL/min. The compressor work reduces about 6.57 % as compared with the air conditioner without evaporative cooling application. Besides, the COP increases by 12. 95 % at the highest flow rate.


2021 ◽  
Vol 29 (01) ◽  
pp. 2150006
Author(s):  
Gopalakrishnan Anand ◽  
Ellen Makar

A Turbine Inlet Air Conditioning (TIAC) system can chill the inlet air of the turbine to maintain maximum turbine performance at all ambient temperatures. However, turbine characteristics, performance guarantees and bell-mouth icing considerations require accurate prediction of the chilling coil performance over a wide range of operating conditions. A modified wet-surface model (MWSM) is developed to more accurately predict the chilling coil performance. The higher accuracy of the model is demonstrated by applying the model to simulate performance data of two different coils. The data covered a wide range of operating conditions with ambient temperature vary from [Formula: see text]C to [Formula: see text]C dry bulb and [Formula: see text]C to [Formula: see text]C wet bulb. The turbine flow rate varies from 100% to 43% with chilled air temperature in the range of 3.3–[Formula: see text]C and chilling load variation of 100% to 5%. The chilled water flow rate varies from 100% to 32% with supply glycol-water temperature in the range of [Formula: see text]2.2–[Formula: see text]C. The MWSM uses 11 empirical parameters evaluated from the coil performance data and is able to correlate the data with an adjusted coefficient of determination ([Formula: see text]) of over 99%. The higher accuracy of the modified model enables the development of a more robust controls strategy required to maintain the inlet air temperature at the set point with varying ambient temperatures and chilling load conditions. The model can also be applied to other chilling and dehumidification applications especially those experiencing wide variations in operating conditions and load or those requiring close control of the chilling and dehumidification process.


Irriga ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 140-150
Author(s):  
Antonio José Steidle Neto ◽  
SÉRGIO ZOLNIER

Este trabalho foi conduzido com o objetivo de analisar o desempenho de um sistema de resfriamento evaporativo do ar (tipo painel-exaustor) em casa-de-vegetação, ao longo do período diurno em dias com condições climáticas distintas. Foram realizadas medições de temperatura e umidade relativa do ar no interior e exterior de uma casa-de-vegetação durante o período de crescimento e desenvolvimento de tomateiros cultivados em substrato de areia. Verificou-se que as eficiências médias diárias de resfriamento evaporativo do ar variaram entre 74% e 81%. Os decréscimos máximos na temperatura do ar, imediatamente após a sua passagem pelo painel de celulose, foram de 8,2ºC e 11,4ºC. Observou-se ainda que, a eficiência de resfriamento do ar foi sensivelmente melhorada quando o déficit de pressão de vapor d'água do ar externo foi superior a 1,8 kPa.   UNITERMOS: déficit de pressão de vapor d'água do ar, temperatura do ar, eficiência de resfriamento evaporativo.     STEIDLE NETO, A. J.; ZOLNIER, S. EVAPORATIVE AIR COOLING SYSTEM PERFORMANCE IN A GREENHOUSE     2 ABSTRACT   This work aimed to analyze the performance of an evaporative air cooling system (pad-fan type) in greenhouse along daytime period in days with different climatic conditions. Air temperature and relative humidity measurements inside and outside of an greenhouse were made during the growing period of tomato plants cultivated in sand substrate. It was verified that the average daily evaporative cooling efficiency ranged from 74% to 81%. The maximum air temperature decrements, immediately after its passage through the cellulose pad, were 8.2°C and 11.4°C. It was also observed that the air cooling efficiency was sensitively improved when the vapor pressure deficit of the external air was higher than 1.8 kPa.   KEYWORDS: vapor pressure deficit, air temperature, evaporative cooling efficiency.  


Author(s):  
E. Kakaras ◽  
A. Doukelis ◽  
A. Prelipceanu ◽  
S. Karellas

Power generation from gas turbines is penalised by a substantial power output loss with increased ambient temperature. By cooling down the gas turbine intake air, the power output penalty can be mitigated. The purpose of this paper is to review the state of the art in applications for reducing the gas turbine intake air temperature and examine the merits from integration of the different air-cooling methods in gas turbine based power plants. Three different intake air-cooling methods (evaporative cooling, refrigeration cooling and evaporative cooling of pre-compressed air) have been applied in two combined cycle power plants and two gas turbine plants. The calculations were performed on a yearly basis of operation, taking into account the time-varying climatic conditions. The economics from integration of the different cooling systems were calculated and compared.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-14
Author(s):  
Alaa R. Al-Badri ◽  
Zahraa Mohsin Farhan

The air conditioning system performance is significantly affected by temperature rise which causes continuous increase in electricity consumption and pollution problems to environment. Evaporative cooling systems are characterized by their low energy consumption so that they represent successful potential alternatives to traditional vapor compression air conditioning systems. This study investigates the performance of multi-stages evaporative cooling systems experimentally and theoretically. The experimental set-up is mainly composed of two parts: indirect unit to decrease the air temperature and direct unit to moisturize the air. The system is installed and equipped with temperatures, humidity, and air velocity sensors. The experimental tests were run continuously to monitor the system performance at various weather conditions between  to  in June and July months. A mathematical model for the system components was developed and implemented in the Engineering Equation Solver (EES) program to simulate the performance of multi-stages evaporative cooling systems. The results showed that the heat flux  increases with the increase in the Reynolds number Re of inlet air, velocity fraction  extracted air for sensible cooling, air temperature at the product-in , air velocity at the product-in , and the adiabatic efficiency . But, it is decreasing with increasing the spacing between the heat exchanger plates  and the relative humidity at the product-in . Optimum performance was obtained with very small space between plates which was bout 5mm. Good agreement have been shown between experimental and predicted data, where the  results. Uncertainty of experimental data was within the range 4.14 to 6.15.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


2019 ◽  
Vol 29 (10) ◽  
pp. 1346-1358 ◽  
Author(s):  
Sebastian Englart

This study discusses the use of a membrane module for semi-direct evaporative air cooling. A cross-flow membrane module was used to carry out this air treatment process. For such a flow, it was proposed to describe and solve the heat and mass transfer model as a one-dimensional problem. The mathematical model was used to determine the moisture content and air temperature at the outlet from the module and the temperature of the circulating water. Results obtained using the proposed model are in good agreement with the experimental data. The relative error for the air temperature at the module outlet did not exceed 0.5%. For the moisture content, the relative error did not exceed 4%. For the circulating water temperature, the relative error did not exceed 0.6%. This paper also discusses the heating efficiency of the evaporative cooling process. Methods for determining the unit cooling indicator and the energy efficiency ratio are also proposed.


2020 ◽  
Vol 5 (3) ◽  
pp. 33-48
Author(s):  
Roman M. Radchenko1 ◽  
◽  
Dariusz Mikielewicz2 ◽  
Mykola I. Radchenko1 ◽  
Victoria S. Kornienko1 ◽  
...  

The efficiency of cooling the air at the inlet of marine slow speed diesel engine turbocharger by ejector chiller utilizing the heat of exhaust gases and scavenge air were analyzed. The values of air temperature drop at the inlet of engine turbocharger and corresponding decrease in fuel consumption of the engine at varying climatic conditions on the route line Odesa-Yokogama- Odesa were evaluated.


Sign in / Sign up

Export Citation Format

Share Document