A New Approach for Void Closure in Bulk Metal Forming

2016 ◽  
Vol 716 ◽  
pp. 595-604 ◽  
Author(s):  
Kai Kittner ◽  
Janine Wiesner ◽  
Rudolf Kawalla

At present, the discussion about pores/ voids in large ingots is still actual. Researchers investigated the closing behavior during the open die forging process. Mostly, the approaches take the account into void closure with artificial pores. But artificial pores do not reflect the real closing behavior. This is caused in the surface/ structure of inner voids. During drilling and heating, the voids got a smooth surface and have contact to the atmosphere. Therefore, the material oxidizes on surface and the closing behavior is not similar to the real process. Real pores show a fractal surface with dendrites. And the inner of voids contains a vaccum. In the framework of a new approach, for void closure cast ingots with pores were generated and the structure and the closing behavior were investigated.The final goal is to find out a global closing function “Z”. This closing function should improve the understanding of void behavior and in the future the industrial process. The function depends on different parameters, like yield strength of material (Pkf), the pore size (AEq), the pore structure (Pstruct) and process parameters (Pproc), such as tool geometry or bite ratio. Finally, there is a parameter Pdisturb. This parameter works against the final closure and is important for the understanding of the process, because it represents the influence of dendrites. Furthermore the closing behavior is not comprehensible without the consideration of recrystallization.

Author(s):  
Lorenzo Scandola ◽  
Christoph Büdenbender ◽  
Michael Till ◽  
Daniel Maier ◽  
Michael Ott ◽  
...  

AbstractThe optimal design of the tools in bulk metal forming is a crucial task in the early design phase and greatly affects the final accuracy of the parts. The process of tool geometry assessment is resource- and time-consuming, as it consists of experience-based procedures. In this paper, a compensation method is developed with the aim to reduce geometrical deviations in hot forged parts. In order to simplify the transition process between the discrete finite-element (FE) mesh and the computer-aided-design (CAD) geometry, a strategy featuring an equivalent surrogate model is proposed. The deviations are evaluated on a reduced set of reference points on the nominal geometry and transferred to the FE nodes. The compensation approach represents a modification of the displacement-compatible spring-forward method (DC-SF), which consists of two elastic FE analyses. The compatible stress originating the deviations is estimated and subsequently applied to the original nominal geometry. After stress relaxation, an updated nominal geometry of the part is obtained, whose surfaces represent the compensated tools. The compensation method is verified by means of finite element simulations and the robustness of the algorithm is demonstrated with an additional test geometry. Finally, the compensation strategy is validated experimentally.


Leonardo ◽  
2008 ◽  
Vol 41 (4) ◽  
pp. 418-419 ◽  
Author(s):  
Caitlin Jones ◽  
Lizzie Muller

This paper describes a new approach to documenting media art which seeks to place in dialogue the artist's intentions and the audience's experience. It explicitly highlights the productive tension between the ideal, conceptual existence of the work, and its actual manifestation through different iterations and exhibitions in the real world. The paper describes how the approach was developed collaboratively during the production of a documentary collection for the artwork Giver of Names, by David Rokeby. It outlines the key features of the approach including artist's interview, audience interviews and data structure.


2020 ◽  
Author(s):  
Masoud Nashibi ◽  
Amin Nashibi ◽  
Seyed Amir Javadi ◽  
Zahid Hussain Khan

This article is an Editorial and does not include an Abstract.


Author(s):  
Lorenzo Iorio ◽  
Luca Pagani ◽  
Matteo Strano ◽  
Michele Monno

Traditionally, industrial sheet metal forming technologies use rigid metallic tools to plastically deform the blanks. In order to reduce the tooling costs, rubber or flexible tools can be used together with one rigid (metallic) die or punch, in order to enforce a predictable and repeatable geometry of the stamped parts. If the complete tooling setup is built with deformable tools, the final part quality and geometry are hardly predictable and only a prototypal production is generally possible. The aim of this paper is to present the development of an automatic tool design procedure, based on the explicit FEM simulation of a stamping process, coupled to a geometrical tool compensation algorithm. The FEM simulation model has been first validated by comparing the experiments done at different levels of the process parameters. After the experimental validation of the FEM model, a compensation algorithm has been implemented for reducing the error between the simulated component and the designed one. The tooling setup is made of machined thermoset polyurethane (PUR) punch, die, and blank holder, for the deep drawing of an aluminum part. With respect to conventional steel dies, the plastic tools used in the test case are significantly more economic. The proposed procedure is iterative. It allows, already after the first iteration, to reduce the geometrical deviation between the actual stamped part and the designed geometry. This methodology represents one step toward the transformation of the investigated process from a prototyping technique into an industrial process for small and medium batch sizes.


Solar Energy ◽  
2018 ◽  
Vol 167 ◽  
pp. 35-51 ◽  
Author(s):  
Rémi Chauvin ◽  
Julien Nou ◽  
Julien Eynard ◽  
Stéphane Thil ◽  
Stéphane Grieu

2021 ◽  
pp. 1-14
Author(s):  
Irina Astrova ◽  
Arne Koschel ◽  
Marc Schaaf ◽  
Samuel Klassen ◽  
Kerim Jdiya

This paper is aimed at helping organizations to understand what they can expect from a serverless architecture in the future and how they can make sound decisions about the choice between microservice and serverless architectures in the present. A serverless architecture is a new approach to offering services in the cloud. It was invented as a solution to the problem that many organizations are facing today – about 85% of their servers have underutilized capacity, which is proved to be costly and wasteful. By employing the serverless architecture, the organizations get a way to eliminate idle, underutilized servers and thus, to reduce their operational costs. Many cloud providers are now jumping to the serverless world because they know it is going to be the future of software architectures. However, being a new approach, the serverless architecture is still relatively immature – it is in the early stages of its support by cloud service platform providers. This paper provides an in-depth study about the serverless architecture and how to apply FaaS in the real world.


2021 ◽  
Vol 03 (04) ◽  
Author(s):  
Maide Bucolo ◽  
Arturo Buscarino ◽  
Luigi Fortuna ◽  
Salvina Gagliano

In this paper, the main concepts and the preliminary results related to a new approach for creating innovative green laboratory experiences in applied science and technology will be discussed. The term ebatronics is here introduced for the first time in the literature to indicate a kind of experimental laboratory based on the conjunction of wooden recycled materials and microcontroller based devices. In particular, tensegrity based systems are presented. A gallery of prototypes developed by the authors is shown. An intense set of photos will illustrate the real effectiveness of the proposed laboratory project.


Author(s):  
Christophe Duret

This chapter will propose an ontology of virtual environments that calls into question the dichotomy between the real and the virtual. This will draw on the concepts of trajectivity and ‘médiance' in order to describe the way virtual environments, with their technological and symbolic features, take part in the construction of human environments. This theoretical proposition will be illustrated with the analysis of Arcadia, a virtual environment built in Second Life. Finally, a mesocriticism will be proposed as a new approach for the study of virtual environments.


Sign in / Sign up

Export Citation Format

Share Document