Preparation and Characterization of Properties of Acrylonitrile Butadiene Styrene Waste Plastic Blended with Virgin Styrene Butadiene Rubber

2016 ◽  
Vol 718 ◽  
pp. 3-9 ◽  
Author(s):  
Nguyen Thi Thuong ◽  
Nguyen Dang Mao ◽  
Bui Thi Phuong Quynh ◽  
Long Giang Bach

In this research, the effect of adding a virgin Styrene Butadiene rubber (SBR) on the morphology and properties of Acrylonitrile Butadiene Styrene (ABS) waste plastic has been investigated. The blends were prepared by melting method and characterized by means of mechanical testing, Scanning Electron Microscopy (SEM), Thermogravimatric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The obtained results indicated that virgin SBR phase dispersed efficiently, effectively in the ABS matrix and impact strength along with thermal resistance of the blends significantly improved. Thus, investigated results in this work will open promising approach for recycling ABS waste plastic.

1970 ◽  
Vol 43 (6) ◽  
pp. 1332-1339 ◽  
Author(s):  
J. K. Clark ◽  
R. A. Scott

Abstract Dissolution of sulfur-cured, carbon black-loaded copolymers and their blends with cis-1,4-polybutadiene (PBD) are brought about by boiling with o-dichlorobenzene which contains a small amount of 2,2′-dibenzamidodiphenyl disulfide. The resulting slurries are subjected to a sequence of separations which include high-speed centrifugation to remove solids, and solvent precipitation followed by filtration to isolate the precipitates. The precipitates are washed with solvent to remove soluble organic materials followed by carbon disulfide washing to dissolve the polymers. Cast films of the polymers are obtained by evaporating the carbon disulfide washings onto sodium chloride discs. The infrared spectra of the cast films of these preparations are very similar to those of their respective polymers prior to loading and curing. Calculations for relative concentrations of bound styrene and PBD micro-structures permit nominal identification of the kinds of styrene-butadiene rubber and the amounts of cis-1,4-PBD used in a cured rubber formulation. Absorption bands used are near 3.35 μ for cis-1,4-PBD, 6.65 μ for bound styrene, 10.35 μ for trans-1,4-PBD; and 11.0 μ for vinyl-1,2-PBD. Efforts are being made to improve the data by using a grating infrared instrument and also to extend the calibrations to include other rubber blends.


2013 ◽  
Vol 130 (2) ◽  
pp. 1308-1312 ◽  
Author(s):  
Suo Xiao ◽  
Jianxiang Feng ◽  
Jin Zhu ◽  
Xi Wang ◽  
Chunwang Yi ◽  
...  

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Sugata Chakraborty ◽  
Saptrashi Kar ◽  
Saikat Dasgupta ◽  
Rabindra Mukhopadhyay ◽  
Samar Bandyopadhyay

AbstractPresent study describes the preparation and characterization of crystal violet modified-montmorillonite clay nanocomposites by latex blending technique. Coagulation of the latex-clay slurry produced nanocomposites master batch. The master batch was compounded with Styrene Butadiene rubber (SBR). WAXD and TEM provided the evidences of formation of nanocomposite. Remarkable improvements in the mechanical properties were found by addition of small amount of modified clay.


2020 ◽  
pp. 009524432093398
Author(s):  
Fuquan Deng ◽  
Hua Jin ◽  
Li Zhang ◽  
Yuxin He

Polymeric foam with lightweight and higher impact strength has been used in many fields due to cost reduction and higher toughness. However, it is often difficult to improve their mechanical property especially tear strength. Here, a double foaming system was designed to increase the tear strength of the foamed ethylene–propylene–diene monomer, styrene–butadiene rubber, and thermoplastic rubber (EPDM/SBR/TPR) materials. The cell size of EPDM/SBR/TPR foam and cell distribution were investigated by scanning electron microscopy, which showed that the cells present a bimodal structure. Besides, the tear strength can reach up to 10 N/mm when the density is about 0.40 g/cm3, which is much superior to those of most engineering plastic foams. Meanwhile, the crystallization property of EPDM/SBR/TPR foams was also demonstrated by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry, which indicates that the double foaming system can reduce the crystallization of EPDM/SBR/TPR molecular chains. In addition, the variation of thermal conductivity values depends on the gradual decrease effect of the cell size.


2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


2009 ◽  
Vol 49 (7) ◽  
pp. 1279-1290 ◽  
Author(s):  
Sugata Chakraborty ◽  
Rajatendu Sengupta ◽  
Saikat Dasgupta ◽  
Rabindra Mukhopadhyay ◽  
Samar Bandyopadhyay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document