Mechanical Properties of Functionally Graded Porous Aluminum Consisting of Pure Aluminum and Al-Mg-Si Aluminum Alloy

2017 ◽  
Vol 741 ◽  
pp. 1-6
Author(s):  
Yoshihiko Hangai ◽  
Tomoaki Morita ◽  
Takao Utsunomiya

Porous aluminum can potentially satisfy both the lightweight and high-energy-absorption properties required for automotive components. In this study, functionally graded porous aluminum consisting of pure aluminum and Al-Mg-Si A6061 aluminum alloy was fabricated by a sintering and dissolution process. It was found that functionally graded porous aluminum with the same pore structures but different types of aluminum alloy can be fabricated. By performing compression tests on the fabricated functionally graded porous aluminum, it was found that its stress-strain curve initially exhibited a relatively low plateau stress similar to that of uniform porous pure aluminum. Thereafter, the stress-strain curves exhibited a relatively high plateau stress similar to that of the uniform porous A6061 aluminum alloy. Namely, it was found that the compression properties of porous aluminum can be adjusted and optimized by selecting the appropriate type of aluminum alloy.

1980 ◽  
Vol 26 (94) ◽  
pp. 519 ◽  
Author(s):  
H. Singh ◽  
F.W. Smith

Abstract In conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates. A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample. A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free. The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit. Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied. “Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


Author(s):  
Masao Sakane ◽  
Akihiko Inoue ◽  
Xu Chen ◽  
Kwang Soo Kim

This paper studies the cyclic ratcheting for two materials under multiaxial stress state. The two materials are SUS304 austenitic stainless steel and A1070 pure aluminum. The former material is known as a material that gives strong additional hardening and the latter material shows little additional hardening under nonproportional cyclic loading. The ratcheting behavior under 12 stress-strain waveforms was extensively studied using hollow cylinder specimen. Ratcheting strain depended on the material and stress-strain waveform. Anisotropic ratcheting was found in A1070 but isotropic ratcheting was observed in SUS304 steel.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3366 ◽  
Author(s):  
Marco Ludovico-Marques ◽  
Carlos Chastre

The study of the mechanical behavior of building stones is traditionally supported by destructive compression tests carried out on representative specimens. However, in order to respect the monuments’ integrity, the study of the mechanical behavior of stones can be based mostly on physical properties obtained from non-destructive tests (NDT). For this study, a simple and cheap NDT—water absorption under low pressure—was used to carry out fast surveys and to predict the most important design parameters of loadbearing masonry, among which are the compressive strength, strain at failure, and even elastic modulus on monument blocks. The paper presents the results of the experimental work conducted to obtain the physical properties and stress–strain curves of the sandstones tested. Supported by these results, it was possible to correlate the various parameters and develop an analytical model that predicts the stress–strain curve of the sandstones based on water absorption under low pressure tests. A good agreement is observed between the analytical model and the experimental tests.


2010 ◽  
Vol 638-642 ◽  
pp. 1890-1895 ◽  
Author(s):  
Naritoshi Aoyagi ◽  
Shigeharu Kamado ◽  
Yo Kojima

Porous aluminum alloy has been developed by powder metallurgy route using Spark plasma sintering (SPS) technique. Sintered material was produced by SPS system after getting the mixture of Al-12Si alloy and titanium hydride powders. Porous materials are prepared under various process conditions, and the pore morphology was investigated. Compression test is performed at crosshead speed of 1mm/min, 10mm/min and 100mm/min with no lubricant. The compression strength, σC i.e. plateau stress was estimated 12MPa at the density of porous materials, 0.7 Mg/m3. Densification strain εD from compression curve is around 0.6. These properties depend on pore morphology of porous materials, and it is possible to control the morphology under specific condition with this process. Plateau stress and absorbed energy of heat treated porous Al-Si alloy were estimated by measurement of a first peak stress and calculated an area up to 0.5 strain from compressive stress-starin curves. Young’s modulus is measured by starin gauge method under compression test. Porous aluminum alloy filled mold die is also produced successfully.


2015 ◽  
Vol 30 (14) ◽  
pp. 2222-2230 ◽  
Author(s):  
Halim Al Baida ◽  
Cécile Langlade ◽  
Guillaume Kermouche ◽  
Ricardo Rafael Ambriz

Abstract


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Y. W. Kwon ◽  
Y. Esmaeili ◽  
C. M. Park

Because most structures are subjected to transient strain-rate loading, an experimental study was conducted to investigate the stress-strain behaviors of an aluminum alloy undergoing varying strain-rate loading. To this end, uniaxial tensile loading was applied to coupons of dog-bone shape such that each coupon underwent two or three different strain-rates, i.e., one rate after another. As a basis, a series of single-strain-rate tests was also conducted with strain-rates of 0.1–10.0 s−1. When the material experienced multistrain-rate loading, the stress-strain curves were significantly different from any single-strain-rate stress-strain curve. The strain-rate history affected the stress-strain curves under multistrain-rate loading. As a result, some simple averaging of single-strain-rate curves did not predict the actual multistrain-rate stress-strain curve properly. Furthermore, the fracture strain under multistrain-rate loading was significantly different from that under any single-strain-rate case. Depending on the applied strain-rates and their sequences, the former was much greater or less than the latter. A technique was proposed based on the residual plastic strain and plastic energy density in order to predict the fracture strain under multistrain-rate loading. The predicted fracture strains generally agreed well with the experimental data. Another observation that was made was that the unloading stress-strain curve was not affected by the previous strain-rate history.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1261 ◽  
Author(s):  
Haiying Bao ◽  
Aiqun Li

Quasi-static uniaxial compression properties and the constitutive equation of spherical cell porous aluminum-polyurethane composites (SCPA-PU composites) were investigated in this paper. The effects of relative density on the densification strain, plateau stress and energy absorption properties of the SCPA-PU composites were analyzed. It is found that the stress-strain curves of SCPA-PU composites consist of three stages: The linear elastic part, longer plastic plateau segment and densification region. The results also demonstrate that both the plateau stress and the densification strain energy of the SCPA-PU composites can be improved by increasing the relative density of the spherical cell porous aluminum (SCPA), while the densification strain of the SCPA-PU composites shows little dependence on the relative density of the SCPA. Furthermore, the applicability of three representative phenomenological models to the constitutive equations of SCPA-PU composites are verified and compared based on the experimental results. The error analysis result indicates that the Avalle model is the best model to characterize the uniaxial compression constitutive equation of SCPA-PU composites.


2017 ◽  
Vol 67 (11) ◽  
pp. 576-581
Author(s):  
Yoshihiko Hangai ◽  
Shun Suto ◽  
Takao Utsunomiya ◽  
Hisanobu Kawashima ◽  
Osamu Kuwazuru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document