Electro-Mechanical Impedance Measurements as a Possible SHM Method for Sandwich Debonding Detection

2017 ◽  
Vol 742 ◽  
pp. 763-777 ◽  
Author(s):  
Christoph Kralovec ◽  
Martin Schagerl

The present article addresses the evaluation of the electro-mechanical (E/M) impedance method as a Structure Health Monitoring (SHM) method to detect and classify damage, more specific, the debonding of a face layer.In the study the considered structure is simplified as a circular sandwich panel of constant thickness, consisting of isotropic face layers and a honeycomb core.The debonding is assumed to be circular and situated at the center of the panel, only variable in its radius.The article starts with a brief introduction to the basic idea of SHM and the fundamentals of the E/M impedance method.Further, the idealized setting is investigated by two sets of experiments whose results are analyzed by typically used damage metrics and by considering both analytical and numerical models.A coupled-field FEM model is developed and compared to the experimental results.Furthermore, an analytical model is derived to evaluate the experimental and numerical results.All results are presented and discussed extensively on pursuing the objective to detect and classify the size of a debonding.Finally, it is shown how a model based approach can predict the presence but also the size of a debonding in the considered sandwich panels based on the E/M impedance measurements.

Author(s):  
Boying Zhang ◽  
Hamad Hameed ◽  
Yuxin Xu ◽  
Chonglin Zhang ◽  
Yong Bai

Health monitoring of welded structural joints is a very important factor of the engineering community. Electro-mechanical impedance (EMI) technique allows the direct evaluation of structural dynamics by evaluating its E/M impedance or admittance signatures. This paper first gives a brief introduction of the theoretical background on the described method. Then, the described EMI technique is applied to recognize the presence of damage by executing experimental works where the damage in the form of crack is simulated with an impedance analyzer at various distances. Four typical welded metallic joints on a jacket platform successfully produced submillimeter cracks under cyclic loading and root mean square deviation (RMSD) is used to evaluate the degree of crack damage. Finally, an outcome of laboratory measurements performed with developed structural health monitoring system based on the electromechanical impedance phenomenon is presented.


2008 ◽  
Vol 56 ◽  
pp. 395-400
Author(s):  
Chung Bang Yun ◽  
Seung Hee Park

This paper presents novel structural health monitoring techniques for critical members of civil structures using electro-mechanical impedance sensors. The basic concept of this technique is to monitor critical locations of a structure for changes in structural impedance that would indicate imminent damage. In this paper, principal hardware and software issues on this topic are reviewed. An active sensing node incorporating on-board microprocessor and radio frequency telemetry is introduced in a sense of tailoring wireless sensing technology to the impedance method. A data compression algorithm using a principal component analysis is embedded into the on-board chip of the active sensing node. Finally, a method for compensating the temperature effects on the impedance measurements using cross-correlation analysis with effective frequency shifts is presented.


1996 ◽  
Vol 3 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Jeffrey A. Gatscher ◽  
Grzegorz Kawiecki

The work presented here explored the detrimental consequences that resulted when mechanical impedance effects were not considered in relating vibration test requirements with field measurements. The ways in which these effects can be considered were evaluated, and comparison of three impedance methods was accomplished based on a cumulative damage criterion. A test structure was used to simulate an equipment and support foundation system. Detailed finite element analysis was performed to aid in computation of cumulative damage totals. The results indicate that mechanical impedance methods can be effectively used to reproduce the field vibration environment in a laboratory test. The establishment of validated computer models, coupled with laboratory impedance measurements, can eliminate the overtesting problems inherent with constant motion, infinite impedance testing strategies.


2017 ◽  
Vol 28 (19) ◽  
pp. 2717-2736 ◽  
Author(s):  
Naveet Kaur ◽  
Lingfang Li ◽  
Suresh Bhalla ◽  
Yong Xia ◽  
Pinghe Ni ◽  
...  

Since the last two decades, the electro-mechanical impedance technique has undergone extensive theoretical and experimental transformations coupled with the evolution of newer practical adaptations and variants. Notable among these are the metal wire–based variant, the dual piezo configuration and the embedded configuration, over and above the conventional surface-bonded configuration. Although there is a plethora of electro-mechanical impedance–related research devoted to metallic structures, only a limited number of studies are available for reinforced concrete structures, which are characterized by more complex behaviour and pose multiple problems for the electro-mechanical impedance sensors such as small range and high damping due to heterogeneous constitution. This article presents, for the first time, a comprehensive comparative study covering four different variants, namely, the surface-bonded single piezo configuration, the embedded single piezo configuration and the metal wire single piezo configuration in electro-mechanical impedance technique for structural health monitoring of a real-life-sized reinforced concrete beam subjected to destructive testing. The article also proposes a modified and more practical version of the dual piezo configuration called the modified dual piezo configuration, employing concrete vibration sensors. It is found that the modified dual piezo configuration is the most expedient among all variants in capturing the damage with respect to the first occurrence of cracks and the final warning of ultimate failure. Metal wire single piezo configuration is good in detecting the first level of damage; however, its efficiency ceases thereafter when crack size increases. It can be considered as an alternative to surface-bonded single piezo configuration in the scenarios where the damage level is incipient. The sensitivity of the modified dual piezo configuration increases with increasing number of actuators connected in parallel due to an increase in the output current. Also, contrary to the surface-bonded single piezo configuration, the susceptance signature of the modified dual piezo configuration is equally sensitive to damage due to the absence of capacitance part in its admittance signature. Hence, its susceptance can also be used for damage severity measurement for incipient damage level in reinforced concrete structures. The surface-bonded single piezo configuration is found to be best in quantifying damage severity in terms of the equivalent stiffness parameter. Embedded single piezo configuration and metal wire single piezo configuration, on the other hand, correlate well with the global dynamic stiffness of the structure. Overall, the proposed integration enables an early detection of damage, its propagation and improved severity measurement for reinforced concrete structures, thus contributing to new application protocols.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2805 ◽  
Author(s):  
Hamidreza Hoshyarmanesh ◽  
Mojtaba Ghodsi ◽  
Minjae Kim ◽  
Hyung Hee Cho ◽  
Hyung-Ho Park

Turbomachine components used in aerospace and power plant applications preferably require continuous structural health monitoring at various temperatures. The structural health of pristine and damaged superalloy compressor blades of a gas turbine engine was monitored using real electro-mechanical impedance of deposited thick film piezoelectric transducers at 20 and 200 °C. IVIUM impedance analyzer was implemented in laboratory conditions for damage detection in superalloy blades, while a custom-architected frequency-domain transceiver circuit was used for semi-field circumstances. Recorded electromechanical impedance signals at 20 and 200 °C acquired from two piezoelectric wafer active sensors bonded to an aluminum plate, near and far from the damage, were initially utilized for accuracy and reliability verification of the transceiver at temperatures >20 °C. Damage formation in both the aluminum plate and blades showed a peak shift in the swept frequency along with an increase in the amplitude and number of impedance peaks. The thermal energy at 200 °C, on the other hand, enforces a further subsequent peak shift in the impedance signal to pristine and damaged parts such that the anti-resonance frequency keeps reducing as the temperature increases. The results obtained from the impedance signals of both piezoelectric wafers and piezo-films, revealed that increasing the temperature somewhat decreased the real impedance amplitude and the number of anti-resonance peaks, which is due to an increase in permittivity and capacitance of piezo-sensors. A trend is also presented for artificial intelligence training purposes to distinguish the effect of the temperature versus damage formation in sample turbine compressor blades. Implementation of such a monitoring system provides a distinct advantage to enhance the safety and functionality of critical aerospace components working at high temperatures subjected to crack, wear, hot-corrosion and erosion.


Sign in / Sign up

Export Citation Format

Share Document