Effect of Oleic Acid on Properties of Natural Rubber Filled Bacterial Cellulose

2017 ◽  
Vol 744 ◽  
pp. 295-299
Author(s):  
Saowaluk Boonyod ◽  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of oleic acid (OA) containing in NR filled BC (NR/BC) was the important factor in this study. BC was varied from 0–25 parts per hundred parts of rubber (phr), and the Mooney viscosity, cure characteristics and mechanical properties of NR/BC with and without OA as compatiblizer was evaluated. It was found that tear strength and elongation at break of NR/BC containing OA improved. The addition of OA into NR/BC affect vulcanization properties of NR/BC masterbatch that retard the cure time of their compound. Of all BC contents investigated, the vulcanized NR/BC at 10-20 phr of BC with OA shows the optimum tear strength and the morphology of the vulcanized NR/BC is improved by the addition of OA.

2016 ◽  
Vol 705 ◽  
pp. 40-44
Author(s):  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of BC content was the important factor in this study. It was that found tensile strength and elongation at break of NR filled BC (NR/BC) decreased with increasing BC content. The addition of BC into NR affect Mooney viscosity of NR/BC masterbatch, with increasing BC content, scorch time and cure time of their compound decreased.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2011 ◽  
Vol 264-265 ◽  
pp. 646-651 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Natural rubber (NR) was reinforced with three types of filler: carbon black, calcium carbonate, and sisal fiber. NR composites were prepared on a two-roll mill. Filler content was 20 phr. Mechanical properties and cure characteristics of NR composites were studied. All NR composites had higher maximum torque than NR. NR filled with carbon black showed the highest maximum torque. However, scorch time and cure time of the NR composites were not much affected by filler types. In addition, influence of fiber treatment (alkalization) on mechanical properties and cure characteristics of sisal fiber-NR composites was investigated. Alkali treated sisal fiber-NR composite exhibited higher tensile properties and hardness than untreated sisal fiber- NR composite due to improved adhesion between the fiber and NR matrix. Moreover, alkali treated sisal fiber-NR composite had superior specific modulus and strength than NR composites filled with carbon black and calcium carbonate.


2008 ◽  
Vol 55-57 ◽  
pp. 341-344 ◽  
Author(s):  
Chanchai Thongpin ◽  
N. Tangchantra ◽  
P. Kaewpetch ◽  
J. Dejkun ◽  
A. Chartsiriwattana

Montmorillonite is a type of clays that has been used to reinforce polymer including rubber. Therefore this research is aimed to modify mechanical properties of natural rubber (NR) using montmorillonite (MMT) comparing with the organic modified montmorillonite (CTAB-MMT) and organic molecule grafted MMT. The affect of MMT, CTAB-MMT and HTMS-g-CTABMMT on cure characteristics of NR were studied. It was found from the research that the increase of MMT content could prolong the scorch time whereas CTAB-MMT and HTMS-g-CTABMMT could shorten the scorch time. The cure times of the compounds in all cases were not much different. In term of mechanical properties, modulus, tensile strength and tear strength of NR/HTMS-g-CTABMMT vulcanizate were higher than those of NR/MMT and NR/CTAB-MMT vulcanizates. Meanwhile, elongation at break of the NR/ HTMS-g-CTABMMT vulcanizate decreased more than the latter cases


2017 ◽  
Vol 751 ◽  
pp. 332-336 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to investigate the possibility of pyrolytic carbon black (PCB) used as filler in natural rubber (NR) and its effect on Mooney viscosity, cure characteristics and mechanical properties compared with commercial carbon black (N774). The results revealed that Mooney viscosity, stiffness and heat build-up tended to increase with increasing both PCB and N774 loading, whereas elongation at break decreased. However, the maximum tensile and tear strengths appeared at the optimum filler loading for both PCB and N774. At similar filler content, PCB-filled NR compounds have higher cure time, heat build-up and thermal resistance. Nevertheless, they exhibited lower Mooney viscosity and mechanical properties compared to N774-filled NR. Finally, it can be concluded that PCB could be utilized as filler in NR compound to act as semi-reinforcing filler and was classified as a filler to reduce costs.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6045-6060
Author(s):  
Zafirah Zainal Abidin ◽  
Siti Nur Liyana Mamauod ◽  
Siti Salina Sarkawi ◽  
Nurshamimi Shahirah Binti Saimi

This research aimed to elucidate the effect of black and non-black filler systems on the cure characteristics and mechanical properties of butyl reclaimed rubber (BRR). In this study, BRR800 was the BRR investigated. Since reclaimed rubber is not entirely 100% rubber, actually being a mixture of rubber, carbon black, oil, zinc oxide, stearic acid and other compounding ingredients used in the original compounds, the reclaimed rubber content in each system was fixed at 161 parts per hundred (pphr). Each mixture was mixed using a two-roll mill. The fillers used in this study were carbon black and calcium carbonate. The Mooney viscosity, cure characteristics, crosslink density, and mechanical properties, such as hardness, abrasion resistance, compression set, tear strength, rebound resilience, and the tensile properties of the vulcanizates were investigated. The results showed that the Mooney viscosity of BRR800 filled with carbon black was increased effectively and had a faster curing time and higher crosslink density than BRR filled with calcium carbonate. In addition, except for compression set and elongation at break, the mechanical properties of BRR800 with a black filler system were higher than those of BRR800 with a non-black filler system.


2010 ◽  
Vol 123-125 ◽  
pp. 1171-1174 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Sisal fiber/natural rubber (NR) composites were prepared by the incorporation of sisal fiber into NR at various content (10, 20, 30 phr) using a two-roll mill. Natural rubber grafted with maleic anhydride (NR-g-MA) prepared in house was used to improve interfacial adhesion between sisal fiber and NR matrix. NR-g-MA contents were varied. Mechanical properties, morphologies, and cure characteristics of the composites were studied. Maximum torque, modulus at 100% strain (M100), modulus at 300% strain (M300), and hardness of the composites increased with increasing fiber content while scorch time, cure time, tensile strength, and elongation at break decreased. The addition of NR-g-MA into the composites gave a positive impact on M100, M300, tensile strength, and hardness. Moreover, increasing NR-g-MA content resulted in increased scorch time, cure time, maximum torque, M100, M300, tensile strength, and hardness of the composites. SEM micrographs of the composites revealed that the addition of NR-g-MA into the composites improved the interfacial interaction between sisal fiber and NR matrix. In addition, the compatibilized NR composites exhibited higher specific tensile strength and modulus than the carbon black/NR composites.


2010 ◽  
Vol 123-125 ◽  
pp. 55-58 ◽  
Author(s):  
Chalermpan Keawkumay ◽  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn

Montmorillonite (MMT) was modified by octadecylamine (ODA) surfactant. The surfactant contents were varied, i.e. 0.5, 1.0 and 2.0 times the cation exchange capacity (CEC) of the MMT. XRD and FTIR spectra of the organoclay revealed that ODA molecules intercalated into MMT layers. The MMT-ODA was melt-mixed with natural rubber (NR) using a two roll mill. Effects of surfactant content and organoclay content on cure characteristics, mechanical properties, and morphologies of NR nanocomposites were investigated. Morphologies of the NR nanocomposites, with increasing surfactant content, revealed the exfoliated structure and the good dispersion of the organoclay in the NR matrix. These caused the enhancement of mechanical properties of the NR nanocomposites. With increasing the MMT-ODA2 content up to 5 phr, scorch time and cure time of the NR nanocomposites decreased while their tensile strength increased.


2014 ◽  
Vol 1033-1034 ◽  
pp. 912-915
Author(s):  
Guang Lu ◽  
Hong Hai Huang ◽  
He Ping Yu ◽  
Yong Zhou Wang

In an attempt to improve the properties of natural rubber-based medical products, natural rubber (NR) was blended with chitosan (CS) and poly(3-hydroxybutyrate) (PHB) in an laboratory type internal mixer, with the total amount of CS and PHB is of 1, 3, 5, 10, 15 and 20 parts per hundred rubber (phr) , and CS and PHB is of a ratio of 1:1. The testing for processing properties of NR/CS/PHB compounds showed that the Mooney viscosity of NR/CS/PHB compounds increased with the addition of 1.0 phr CS/PHB and then decreased with increase in CS/PHB content, but the Mooney viscosity of each NR/CS/PHB compound was higher than that of NR compound; the minimum torque (ML) increased only slightly, while the maximum torque (MH) increased gradually, with increase in NR/CS/PHB content; thescorching tendency of NR/CS/PHB compounds increased with the increase in CS/PHB content; the optimum cure time (t90) decreased firstly, then increased with increase in CS/PHB content, and was not greatly different from that of NR compound. The results of mechanical properties of NR/CS/PHB vulcanizates showed that the tensile strength and elongation at break deceased, whereas the 300% and 500% moduli, tear strength and hardness increased, with increase in CS/PHB content.


2013 ◽  
Vol 812 ◽  
pp. 66-72 ◽  
Author(s):  
Mohd Zaini Nurul Aizan ◽  
Salim Abdul Salim Zainathul Akhmar ◽  
Ahmad Mohd Muhiddin ◽  
Zainudin Nor Hazwani ◽  
Jamil Siti Sarah

In recent years, natural fibres appear to be as an outstanding material to substitute the conventional reinforcement materials in polymer composites. Kenaf fibre reinforced natural rubber (KFNR) composite was prepared by incorporating of different loadings of kenaf fibre using two roll mill machines. The compound was vulcanised at 150°C according to their respective cure time. The intention of this study is to investigate the influence of kenaf fibre on cure characteristics and mechanical bahaviour of (KFNR) composites.The result showed that the higher fibre content in composites led to shorter optimum cure time, t90. It was also observed that the tensile strength and elongation at break gradually decreased with an increment in fibre loadings. However, the trend was not similar for the hardness where the hardness value was increased by the increment of fibre loadings. The study has exhibited that the optimum fibre loading for the best performance of the composite achieved was 10 phr. The Scanning Electron Microscopy micrograph clarified that fibre dispersion and adhesion were weak thus resulting low in tensile strength and elongation at break.


Sign in / Sign up

Export Citation Format

Share Document