Influence of Filler Types on Mechanical Properties and Cure Characteristics of Natural Rubber Composites

2011 ◽  
Vol 264-265 ◽  
pp. 646-651 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Natural rubber (NR) was reinforced with three types of filler: carbon black, calcium carbonate, and sisal fiber. NR composites were prepared on a two-roll mill. Filler content was 20 phr. Mechanical properties and cure characteristics of NR composites were studied. All NR composites had higher maximum torque than NR. NR filled with carbon black showed the highest maximum torque. However, scorch time and cure time of the NR composites were not much affected by filler types. In addition, influence of fiber treatment (alkalization) on mechanical properties and cure characteristics of sisal fiber-NR composites was investigated. Alkali treated sisal fiber-NR composite exhibited higher tensile properties and hardness than untreated sisal fiber- NR composite due to improved adhesion between the fiber and NR matrix. Moreover, alkali treated sisal fiber-NR composite had superior specific modulus and strength than NR composites filled with carbon black and calcium carbonate.

2010 ◽  
Vol 123-125 ◽  
pp. 1171-1174 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Sisal fiber/natural rubber (NR) composites were prepared by the incorporation of sisal fiber into NR at various content (10, 20, 30 phr) using a two-roll mill. Natural rubber grafted with maleic anhydride (NR-g-MA) prepared in house was used to improve interfacial adhesion between sisal fiber and NR matrix. NR-g-MA contents were varied. Mechanical properties, morphologies, and cure characteristics of the composites were studied. Maximum torque, modulus at 100% strain (M100), modulus at 300% strain (M300), and hardness of the composites increased with increasing fiber content while scorch time, cure time, tensile strength, and elongation at break decreased. The addition of NR-g-MA into the composites gave a positive impact on M100, M300, tensile strength, and hardness. Moreover, increasing NR-g-MA content resulted in increased scorch time, cure time, maximum torque, M100, M300, tensile strength, and hardness of the composites. SEM micrographs of the composites revealed that the addition of NR-g-MA into the composites improved the interfacial interaction between sisal fiber and NR matrix. In addition, the compatibilized NR composites exhibited higher specific tensile strength and modulus than the carbon black/NR composites.


2018 ◽  
Vol 382 ◽  
pp. 94-98 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Chaiwute Vudjung ◽  
Wunchai Inthisaeng ◽  
Sansanee Srichan ◽  
Kanchana Sapprasert ◽  
...  

The present research aimed to develop natural rubber (NR) hybrid composites reinforced with calcium carbonate/carbon black (CC/CB) and calcium carbonate/silica (CC/SC). The influence of CC/CB and CC/SC with various filler ratios (120/0, 90/5, 60/10, 30/15 and 0/20) on cure characteristics and mechanical properties of the vulcanizates was investigated and their reinforcing efficiency was compared. It has been found that incorporation of CB in the hybrid filler decreases the scorch time and cure time but increases crosslink density, whereas the incorporation of silica showed cure retardation. As CB or SC content increases, stiffness, tensile strength and tear strength increase, while elongation at break and compression set decrease. Scanning electron microscopy studies also reveal poor filler dispersion and poor adhesion between filler particles and matrix in the vulcanizates with increasing in CC content in a weight filler ratio which causes inferior mechanical properties. Incorporation of CB or SC content enhanced the mechanical properties of the vulcanizates, where CC/CB hybrid system exhibited higher reinforcing efficiency compared with CC/SC hybrid system.


2014 ◽  
Vol 679 ◽  
pp. 300-304
Author(s):  
Z. Norhafizah ◽  
N.Z. Noriman ◽  
A.M. Mustafa Al Bakri ◽  
M.H. Fatin ◽  
J.N.M. Ridhwan ◽  
...  

The effects on properties of recycle nitrile glove (NBRr) filled Epoxidised Natural Rubber (ENR 50) was studied. Compound was prepared by two roll mill at five different compositions of NBRr (5, 15, 25, 35 and 50 phr). Two different size ranges of NBRr particles i.e., 300μm-700μm (fine) and 3cm-5cm (coarse) were used. The properties of cure characteristics (cure time, scorch time, minimum torque, and maximum torque) and swelling test were determined. Results indicated that the incorporation of fine size NBRr loading on ENR 50 provides better improvement both on cure characteristics and swelling behaviour mainly at 15 phr of NBRr compared to the coarser size NBRr particles.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6045-6060
Author(s):  
Zafirah Zainal Abidin ◽  
Siti Nur Liyana Mamauod ◽  
Siti Salina Sarkawi ◽  
Nurshamimi Shahirah Binti Saimi

This research aimed to elucidate the effect of black and non-black filler systems on the cure characteristics and mechanical properties of butyl reclaimed rubber (BRR). In this study, BRR800 was the BRR investigated. Since reclaimed rubber is not entirely 100% rubber, actually being a mixture of rubber, carbon black, oil, zinc oxide, stearic acid and other compounding ingredients used in the original compounds, the reclaimed rubber content in each system was fixed at 161 parts per hundred (pphr). Each mixture was mixed using a two-roll mill. The fillers used in this study were carbon black and calcium carbonate. The Mooney viscosity, cure characteristics, crosslink density, and mechanical properties, such as hardness, abrasion resistance, compression set, tear strength, rebound resilience, and the tensile properties of the vulcanizates were investigated. The results showed that the Mooney viscosity of BRR800 filled with carbon black was increased effectively and had a faster curing time and higher crosslink density than BRR filled with calcium carbonate. In addition, except for compression set and elongation at break, the mechanical properties of BRR800 with a black filler system were higher than those of BRR800 with a non-black filler system.


2017 ◽  
Vol 744 ◽  
pp. 295-299
Author(s):  
Saowaluk Boonyod ◽  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of oleic acid (OA) containing in NR filled BC (NR/BC) was the important factor in this study. BC was varied from 0–25 parts per hundred parts of rubber (phr), and the Mooney viscosity, cure characteristics and mechanical properties of NR/BC with and without OA as compatiblizer was evaluated. It was found that tear strength and elongation at break of NR/BC containing OA improved. The addition of OA into NR/BC affect vulcanization properties of NR/BC masterbatch that retard the cure time of their compound. Of all BC contents investigated, the vulcanized NR/BC at 10-20 phr of BC with OA shows the optimum tear strength and the morphology of the vulcanized NR/BC is improved by the addition of OA.


2010 ◽  
Vol 123-125 ◽  
pp. 55-58 ◽  
Author(s):  
Chalermpan Keawkumay ◽  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn

Montmorillonite (MMT) was modified by octadecylamine (ODA) surfactant. The surfactant contents were varied, i.e. 0.5, 1.0 and 2.0 times the cation exchange capacity (CEC) of the MMT. XRD and FTIR spectra of the organoclay revealed that ODA molecules intercalated into MMT layers. The MMT-ODA was melt-mixed with natural rubber (NR) using a two roll mill. Effects of surfactant content and organoclay content on cure characteristics, mechanical properties, and morphologies of NR nanocomposites were investigated. Morphologies of the NR nanocomposites, with increasing surfactant content, revealed the exfoliated structure and the good dispersion of the organoclay in the NR matrix. These caused the enhancement of mechanical properties of the NR nanocomposites. With increasing the MMT-ODA2 content up to 5 phr, scorch time and cure time of the NR nanocomposites decreased while their tensile strength increased.


2011 ◽  
Vol 410 ◽  
pp. 63-66 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Sisal fiber/natural rubber (NR) composites were prepared by the incorporation of sisal fiber into NR at contents of 10-30 phr. Fiber treatment (alkalization) and adding maleic anhydride grafted natural rubber (NR-g-MA) were used to improve interfacial adhesion between sisal fiber and NR matrix. Mechanical properties, morphologies, and cure characteristics of the composites were studied. With increasing fiber content, modulus at 100% strain (M100), modulus at 300% strain (M300), and hardness of the composites increased whereas tensile strength and elongation at break decreased. Cure time of the composites decreased with increasing fiber content but scorch time was not much affected by fiber content. Alkali treated sisal fiber/NR composite exhibited higher tensile properties and hardness than untreated sisal fiber/NR composite at all fiber content due to the improved adhesion between fiber and NR matrix through the mechanical interlocking mechanism. Alkalization showed no effect on scorch time and cure time of the composites. The addition of NR-g-MA into the composites increased M100, M300, tensile strength, and hardness but prolonged scorch time and cure time. NR-g-MA provided more effective improvement of the mechanical properties of the composites when compared to fiber alkalization.


2013 ◽  
Vol 33 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Shohreh Tolooei ◽  
Ghasem Naderi ◽  
Shirin Shokoohi ◽  
Sedigheh Soltani

Abstract Ternary elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR), polybutadiene rubber (BR) and two types of nanoclay (Cloisite 15A and Cloisite 30B) were prepared using a laboratory scale two-roll mill. The effects of nanoclay composition on the cure characteristics, mechanical properties and morphology of NBR/BR (50/50) nanocomposite samples containing 3, 5, 7 and 10 wt% nanoclay were investigated. According to the cure characteristics both types of nanoclay caused a reduction in the scorch time and optimum cure time of the nanocomposite compound. X-ray diffraction patterns of all samples suggested the intercalation of polymer chains into the silicate layers. This was confirmed by transmission electron microscopy (TEM) micrographs. Dynamic mechanical thermal analysis (DMTA) was utilized to study the dispersion state of nanoclay within the elastomer blend matrix. The results showed the development of mechanical properties with the establishment of interactions between nanoclay and polymer chains. Antiknock and brake fluid uptake were also reduced with increasing the nanoclay content.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


Sign in / Sign up

Export Citation Format

Share Document