Influence of Pyrolytic Carbon Black Prepared from Waste Tires on Mechanical Properties of Natural Rubber Vulcanizates

2017 ◽  
Vol 751 ◽  
pp. 332-336 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to investigate the possibility of pyrolytic carbon black (PCB) used as filler in natural rubber (NR) and its effect on Mooney viscosity, cure characteristics and mechanical properties compared with commercial carbon black (N774). The results revealed that Mooney viscosity, stiffness and heat build-up tended to increase with increasing both PCB and N774 loading, whereas elongation at break decreased. However, the maximum tensile and tear strengths appeared at the optimum filler loading for both PCB and N774. At similar filler content, PCB-filled NR compounds have higher cure time, heat build-up and thermal resistance. Nevertheless, they exhibited lower Mooney viscosity and mechanical properties compared to N774-filled NR. Finally, it can be concluded that PCB could be utilized as filler in NR compound to act as semi-reinforcing filler and was classified as a filler to reduce costs.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dosu Malomo ◽  
Abdulhakeem D Olasupo ◽  
Abayomi M Adesigbin ◽  
Owen Egharevba ◽  
Sulaiman O Adewuyi ◽  
...  

Palm kernel shell was activated using chemical activation of H3PO4 and KOH. Various amounts of activated palm kernel shell (APKS) couple with carbon black (CB) and other conventional ingredients were used to produce natural rubber vulcanizates (NR vulcanizates). The NR vulcanizates were compounded on a two-row mill and tested for its physico-mechanical properties. The results for characterization of physicochemical properties carried out on APKS  were ash content (2.06%), moisture content (8.06%), %carbon (54.41%), particle size (4.00, 3.35, 2.00, 1.18mm), bulk density (0.62g/ml) and pH (5.3).The results show significant values for all, the moisture and ash content were within the recommended standard of ASTM (3-10max) and (< or =8) respectively. The filler loading concentrations CB/APKS were labeled as mixes 1 to 7. The composition of CB/APKS filler loading ratios were 30:0, 25:5, 20:10, 15:15, 10:20, 5:25, and 0:30 samples 1,2,3,4,5,6 and 7 respectively. Results obtained showed that CB/APKS filled vulcanizates exhibited improvement in the physico-mechanical properties investigated. The results obtained for CB/APKS across the samples filler loading shows that CB composition possess higher UTS, EB and rubber fatigue test while APKS filler loading composition exhibited higher hardness and young modulus. Abrasion resistance was excellent for both CB and APKS filler loading composition.Keywords: Activated Palm Kernel Shell, filler, carbon black, Chemical Activation, Natural Rubber.


2016 ◽  
Vol 705 ◽  
pp. 40-44
Author(s):  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of BC content was the important factor in this study. It was that found tensile strength and elongation at break of NR filled BC (NR/BC) decreased with increasing BC content. The addition of BC into NR affect Mooney viscosity of NR/BC masterbatch, with increasing BC content, scorch time and cure time of their compound decreased.


2017 ◽  
Vol 744 ◽  
pp. 295-299
Author(s):  
Saowaluk Boonyod ◽  
Chaiwute Vudjung

Natural rubber (NR) containing the nata de coco fiber or Bacterial cellulose (BC) was prepared by co-coagulation of BC and concentrated NR latex with CaCl2 and compounded by two roll mill. The effect of oleic acid (OA) containing in NR filled BC (NR/BC) was the important factor in this study. BC was varied from 0–25 parts per hundred parts of rubber (phr), and the Mooney viscosity, cure characteristics and mechanical properties of NR/BC with and without OA as compatiblizer was evaluated. It was found that tear strength and elongation at break of NR/BC containing OA improved. The addition of OA into NR/BC affect vulcanization properties of NR/BC masterbatch that retard the cure time of their compound. Of all BC contents investigated, the vulcanized NR/BC at 10-20 phr of BC with OA shows the optimum tear strength and the morphology of the vulcanized NR/BC is improved by the addition of OA.


2021 ◽  
Vol 39 (4) ◽  
pp. 1142-1149
Author(s):  
A.C. Ezika ◽  
V.U. Okpechi

Effects of chemically treated and carbonized spear grass fibre on the curing and mechanical properties of natural rubber vulcanizates were carried out. Natural rubber (NR) was filled with carbonized (at carbonization temperatures of 400°C, 600°C and 800°C  respectively) and chemically treated (treatment with HCl and NaOH of 5% concentration) spear grass fillers respectively, at a filler loading of 30phr. The rubber compounding was carried out in a bambury mixer. The effect of carbonization temperature and chemical treatment of the filler on the mechanical properties (tensile strength, % elongation, hardness strength, abrasion resistance and compression set) and rheological properties (cure time, scorch time, maximum and minimum torque) were carried out on the  samples. The results of the mechanical properties of carbonized spear grass fibre (C-SGF) filled vulcanizates show that the optimum carbonization temperature for an improved tensile strength, % elongation, hardness, abrasion and compression set was obtained at 400°C. NaOH treated fibre filled vulcanizates showed better mechanical properties; with the highest abrasion resistance of 67.65%, while untreated and acidified fibre filled vulcanizates showed poor mechanical properties. Acidified (HCl) uncarbonized spear grass fibre (U-SGF) filled vulcanizate had the highest compression set of 48% against C-SGF filled vulcanzates and carbon black filled  vulcanizate, with carbon black filled vulcanizate having 47% as its compression set value. This reveals that at a carbonization temperature of 400°C, C-SGF appears to be a potential substitute filler for carbon black (CB). Keywords: Spear Grass Fibre, Natural Rubber, Chemical Treatments, Cure Characteristics, Mechanical Properties, Carbonization


2014 ◽  
Vol 1033-1034 ◽  
pp. 912-915
Author(s):  
Guang Lu ◽  
Hong Hai Huang ◽  
He Ping Yu ◽  
Yong Zhou Wang

In an attempt to improve the properties of natural rubber-based medical products, natural rubber (NR) was blended with chitosan (CS) and poly(3-hydroxybutyrate) (PHB) in an laboratory type internal mixer, with the total amount of CS and PHB is of 1, 3, 5, 10, 15 and 20 parts per hundred rubber (phr) , and CS and PHB is of a ratio of 1:1. The testing for processing properties of NR/CS/PHB compounds showed that the Mooney viscosity of NR/CS/PHB compounds increased with the addition of 1.0 phr CS/PHB and then decreased with increase in CS/PHB content, but the Mooney viscosity of each NR/CS/PHB compound was higher than that of NR compound; the minimum torque (ML) increased only slightly, while the maximum torque (MH) increased gradually, with increase in NR/CS/PHB content; thescorching tendency of NR/CS/PHB compounds increased with the increase in CS/PHB content; the optimum cure time (t90) decreased firstly, then increased with increase in CS/PHB content, and was not greatly different from that of NR compound. The results of mechanical properties of NR/CS/PHB vulcanizates showed that the tensile strength and elongation at break deceased, whereas the 300% and 500% moduli, tear strength and hardness increased, with increase in CS/PHB content.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2017 ◽  
Vol 735 ◽  
pp. 153-157
Author(s):  
Wasinee Pinpat ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

Silica has been used as reinforcing filler in natural rubber for a period of time as it results in excellent properties for NR vulcanizes. Rice husk ash (RHA), bagasse ash (BA), and oil palm ash (OPA) obtained from agricultural wastes are mainly composed of silica in the percentage of 80.00%, 57.33%, and 40.20% by weight, respectively. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at fixed silica content at 35 parts per hundred of rubber (phr) were investigated. The results indicated that ashes showed greater cure time compared to that of the silica. The incorporation of ashes into natural rubber gradually improved compression set but significantly decreased tensile strength, elongation at break, and resilience. Moreover, young's modulus increased, while hardness showed no significant change with the addition of ashes. Overall results indicated that ashes could be used as cheaper fillers for natural rubber materials where improved mechanical properties were not critical.


2018 ◽  
Vol 382 ◽  
pp. 94-98 ◽  
Author(s):  
Sarawut Prasertsri ◽  
Chaiwute Vudjung ◽  
Wunchai Inthisaeng ◽  
Sansanee Srichan ◽  
Kanchana Sapprasert ◽  
...  

The present research aimed to develop natural rubber (NR) hybrid composites reinforced with calcium carbonate/carbon black (CC/CB) and calcium carbonate/silica (CC/SC). The influence of CC/CB and CC/SC with various filler ratios (120/0, 90/5, 60/10, 30/15 and 0/20) on cure characteristics and mechanical properties of the vulcanizates was investigated and their reinforcing efficiency was compared. It has been found that incorporation of CB in the hybrid filler decreases the scorch time and cure time but increases crosslink density, whereas the incorporation of silica showed cure retardation. As CB or SC content increases, stiffness, tensile strength and tear strength increase, while elongation at break and compression set decrease. Scanning electron microscopy studies also reveal poor filler dispersion and poor adhesion between filler particles and matrix in the vulcanizates with increasing in CC content in a weight filler ratio which causes inferior mechanical properties. Incorporation of CB or SC content enhanced the mechanical properties of the vulcanizates, where CC/CB hybrid system exhibited higher reinforcing efficiency compared with CC/SC hybrid system.


2014 ◽  
Vol 931-932 ◽  
pp. 68-72
Author(s):  
Komsun Temna ◽  
Nitinart Saetung ◽  
Anuwat Saetung

In this work, the sponge rubbers based on cassava starch masterbatch in latex phase with the difference technique (non-gelatinized and gelatinized cassava starch) were preformed. The cassava starch contents from 0 to 70 phr were also studied. The cure characteristic, mechanical and morphological properties were investigated. It was found that the scorch time and cure time were increased with an increasing of cassava starch contents in both techniques. The mechanical properties i.e., tensile strength, elongation at break and tear strength were decreased with an increasing of cassava starch contents, except 500% modulus. However, the sponge based on gelatinized technique gave the better mechanical properties than that of non-gelatinized cassava starch. The SEM micrographs of sponge NR from gelatinized technique were also able to confirm a good interfacial interaction between hydrophilic cassava starch and hydrophobic NR.


2005 ◽  
Vol 78 (1) ◽  
pp. 84-104 ◽  
Author(s):  
Kwang-Jea Kim ◽  
John VanderKooi

Abstract Moisture was treated on a silica surface and it was added into bis(triethoxysilylpropyl)disulfide (TESPD)/carbon black (CB)/S-SBR compound and mixed in an internal mixer. The effects of moisture were investigated with respect to the temperature rise during mixing, processability, cure characteristics, and mechanical properties and two-pass (2P) mixings were compared with conventional three-pass (3P) mixings. Addition of the moisture treated silica into the compound lowered the heat generation during mixing, lowered the drop temperature, decreased the scorch time, lowered the heat build up, lowered the tanδ (E″/E′), increased the Mooney viscosity, increased the torque rise (MH-ML), increased the elongation modulus, increased the blow out time, and increased the deformation%. The properties of each compound were gradually increased with the level of moisture and the 2P mixing procedure generated less heat during mixing and exhibited better mechanical properties than the 3P mixing one. The addition of water molecules improved the silane reaction with silica surface via improved hydrolysis and resulted in an increased level of cross-linking. It also seemed hydrolyzes the benzothiazolesulfenamide accelerator and resulted in a faster scorch and an increased cure rate.


Sign in / Sign up

Export Citation Format

Share Document