Preparation of Polyaniline/Cu-BTC Composite and its Sensing Application for Ammonia

2017 ◽  
Vol 748 ◽  
pp. 353-357
Author(s):  
Yong Jin Zou ◽  
Ying Yin ◽  
Hai Tao Zhang ◽  
Fen Xu ◽  
Li Xian Sun

In this study, a newly materials based on copper–benzene-1,3,5-tricarboxylate/polyaniline (PANI/Cu-BTC) composite was investigated for NH3 sensing. Cu-BTC was grown on the PANI a hydrothermal process. The sensing performance of as-grown product was studied for different concentrations of NH3 at room temperature. The results reveal that Cu-BTC/PANI composite exhibit high sensitivity toward NH3. The good sensing performance of the composite was attributed to high surface area and good affinity of Cu-BTC for NH3, which can act like preconcentrator for the NH3 gas sensing.

2021 ◽  
Vol 9 ◽  
Author(s):  
Faheem Ullah Khan ◽  
Shahid Mehmood ◽  
Shiliang Liu ◽  
Wei Xu ◽  
Muhammad Naeem Shah ◽  
...  

As formaldehyde is an extremely toxic volatile organic pollutant, a highly sensitive and selective gas sensor for low-concentration formaldehyde monitoring is of great importance. Herein, metal-organic framework (MOF) derived Pd/PdO@ZnO porous nanostructures were synthesized through hydrothermal method followed by calcination processes. Specifically, porous Pd/PdO@ZnO nanomaterials with large surfaces were synthesized using MOFs as sacrificial templates. During the calcination procedure, an optimized temperature of 500°C was used to form a stable structure. More importantly, intensive PdO@ZnO inside the material and composite interface provides lots of p-n heterojunction to efficiently manipulate room temperature sensing performance. As the height of the energy barrier at the junction of PdO@ZnO exponentially influences the sensor resistance, the Pd/PdO@ZnO nanomaterials exhibit high sensitivity (38.57% for 100 ppm) at room temperature for 1-ppm formaldehyde with satisfactory selectivity towards (ammonia, acetone, methanol, and IPA). Besides, due to the catalytic effect of Pd and PdO, the adsorption and desorption of the gas molecules are accelerated, and the response and recovery time is as small as 256 and 264 s, respectively. Therefore, this MOF-driven strategy can prepare metal oxide composites with high surface area, well-defined morphology, and satisfactory room-temperature formaldehyde gas sensing performance for indoor air quality control.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24268-24275 ◽  
Author(s):  
Liping Yang ◽  
Zhou Wang ◽  
Xinyuan Zhou ◽  
Xiaofeng Wu ◽  
Ning Han ◽  
...  

This work reports a simple, rapid, effective and reliable CH4 sensor based on Pd-loaded SnO2 hollow spheres with high surface area and porosity, which is of great importance to gas sensing performance.


RSC Advances ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 4763-4771 ◽  
Author(s):  
Muhammad Bilal Hussain ◽  
Malik Saddam Khan ◽  
Herman Maloko Loussala ◽  
Muhammad Sohail Bashir

Cr(vi) reduction is performed by BiOCl0.8Br0.2 composite produced via a facile in situ synthetic process at room temperature while making use of PVP (Mw = 10 000).


ACS Catalysis ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 2051-2061 ◽  
Author(s):  
Nicholas C. Nelson ◽  
J. Sebastián Manzano ◽  
Aaron D. Sadow ◽  
Steven H. Overbury ◽  
Igor I. Slowing

2012 ◽  
Vol 10 (3) ◽  
pp. 826-832 ◽  
Author(s):  
A. Dhayal Raj ◽  
P. Suresh Kumar ◽  
D. Mangalaraj ◽  
N. Ponpandian ◽  
A. Albert Irudayaraj ◽  
...  

2015 ◽  
Vol 39 (12) ◽  
pp. 9124-9131 ◽  
Author(s):  
Savita Patil ◽  
Shrikant Raut ◽  
Ratnakar Gore ◽  
Babasaheb Sankapal

Room-temperature synthesis of Cd(OH)2 thin film consisting of high-surface-area nanowires. Device-grade development as a symmetric supercapacitor.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37085-37092 ◽  
Author(s):  
Ying Yang ◽  
Li Sun ◽  
Xiangting Dong ◽  
Hui Yu ◽  
Tingting Wang ◽  
...  

Fe3O4nanoparticles-decorated reduced graphene oxide nanocomposites have been successfully synthesized using solvothermal-pyrolytic method. They have superior gas sensing performance with low detection limit, high sensitivity and short response time.


2014 ◽  
Vol 605 ◽  
pp. 299-302 ◽  
Author(s):  
Jerome Rossignol ◽  
Didier Stuerga

In literature, many papers describe the applications of semiconductor as sensitive material in sensor field. The gas sensor using tin oxide requires a strictly controlled high operating temperature in order to detect both reducing and oxidizing gases. The semiconductor nanoparticles, with their high specific surface area, increase the gas sensing performance. The originality of this work is to valorize the nanoparticle of metal oxide like SnO2, TiO2 obtained by microwave thermohydrolysis synthesis, using a gas sensing microwave transduction. The present synthesis is to prepare metal oxide nanocrystalline powder with a high surface area by microwave-induced thermohydrolysis. We propose to study the influence of the metal oxide nanoparticle, as a sensitive layer, in gas sensing measurement. The pollutant is added into an argon flow (dynamic regim). This work highlights a specific sensor response to each ammonia concentration at room temperature. It shows a quasi-linear relationship between the set of points of the real part of the response and the ammonia concentration. The authors are currently working on these issues as well as the interaction mechanism between adsorbed gas molecules and metal oxide films.


2021 ◽  
Vol 60 (1) ◽  
pp. 839-845
Author(s):  
Samia Belhousse ◽  
Fatma-Zohra Tıghılt ◽  
Sarah Bennıa ◽  
Sarah Adjtoutah ◽  
Sabrina Sam ◽  
...  

Abstract In recent years, hybrid structures have attracted wide consideration because they generate new very interesting properties. In this study, a hybrid gas sensor was developed using a simple fabrication process from the combination of porous silicon (PSi) and polythiophene (PTh). The study of the effect of electropolymerization rate and film thickness of PTh on the sensitivity and the stability of sensor was realized at room temperature. PSi was formed by electrochemical anodization, and it is an interesting material for sensing applications due to its high surface area. However, to avoid its degradation and to preserve its properties over the time, PSi surface was functionalized electrochemically with PTh subsequently to thermal oxidation. PTh as a conductive polymer is known for its high sensitivity and stability to environmental change. Several thicknesses of PTh have been electropolymerized onto the oxidized PSi surface to determine the best conditions for developing a sensitive and stable sensor. PTh thickness was controlled by the number of applied voltammogram cyclic. The characterizations of the different elaborated surfaces were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, cyclic voltammetry, contact angle, and secondary ion mass spectrometry. Finally, we studied the sensitivity, the response time, and the stability of PSi/PTh structures with different PTh thicknesses in the presence of CO2 gas and under cigarette smoke, by performing electrical characterizations, at room temperature.


Sign in / Sign up

Export Citation Format

Share Document