Development of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites for Bumper Beam in Automobile

2017 ◽  
Vol 751 ◽  
pp. 779-784
Author(s):  
Suteera Witayakran ◽  
Wuttinant Kongtud ◽  
Jirachaya Boonyarit ◽  
Wirasak Smitthipong ◽  
Rungsima Chollakup

This research aims to use oil palm empty fruit bunch (EFB) fibers to reinforce epoxy resin for bumper beam in cars to replace epoxy/glass fiber composite. EFB fibers were extracted by two methods; chemical method by treating with 10-30% sodium hydroxide (% by weight of fiber) and mechanical method by steam explosion process at 12-20 kgf/cm2 for 5 mins. Then, the obtained fibers were bleached by hydrogen peroxide. The results show that the chemical method can eliminate lignin better than the other and provided stronger fibers. Increasing of alkaline concentration yielded the decrease of lignin content and increase of cellulose content, while no significant difference on fiber size and strength was observed. In steam explosion method, increasing of pressure vapor affected to more dark brown color and disintegrated fibers. Therefore, the optimal method for preparing EFB fibers for reinforcement of epoxy composite was chemical treatment using 30%NaOH, followed by bleaching. Then, the EFB fibers extracted by chemical method at 30%NaOH were used for reinforcing epoxy composite with fiber contents of 0-10%w/w and compared to epoxy/glass fiber composite. The results show that flexural modulus did not increase with increasing fiber content. However, the chemical treated fibers can support composite from falling apart after testing like glass fiber reinforced composite with fiber contents upper than 7.5%w/w. Impact strength and storage modulus of alkaline treated palm fiber reinforced composites increased when fiber content more than 7.5%w/w. Thermal properties of composite, analyzed by DSC and DMTA, shows that the Tg increased with fiber content. Flexural modulus and thermal properties of EFB reinforced epoxy composites provided similar results to glass fiber reinforced composites. Therefore, EFB fiber reinforced epoxy composite could be an alternative green material for bumper beam in automobile.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7412
Author(s):  
Mohammed Y. Abdellah ◽  
Mohamed K. Hassan ◽  
Ahmed F. Mohamed ◽  
Ahmed H. Backar

In this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured. The hand lay-up technique is used to fabricate composite laminates with woven 8-ply carbon and glass fiber reinforced epoxy. Tensile tests, cyclic relaxation tests and drop weight impacts are carried out on the carbon and glass fiber-reinforced epoxy laminates. The surface release energy GIC and the related fracture toughness KIC are important characteristic properties and are therefore measured experimentally using a standard test on centre-cracked specimens. The results show that carbon fiber-reinforced epoxy laminates with high tensile strength give high cyclic relaxation performance, better than the specimens with glass fiber composite laminates. This is due to the higher strength and stiffness of carbon fiber-reinforced epoxy with 600 MPa compared to glass fiber-reinforced epoxy with 200 MPa. While glass fibers show better impact behavior than carbon fibers at impact energies between 1.9 and 2.7 J, this is due to the large amount of epoxy resin in the case of glass fiber composite laminates, while the impact behavior is different at impact energies between 2.7 and 3.4 J. The fracture toughness KIC is measured to be 192 and 31 MPa √m and the surface energy GIC is measured to be 540.6 and 31.1 kJ/m2 for carbon and glass fiber-reinforced epoxy laminates, respectively.


2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


2000 ◽  
Author(s):  
Shu Ching Quek ◽  
Anthony M. Waas

Abstract Results from an experimental and analytical study on the behavior of braided glass fiber composite tubes under quasi-static crush conditions are presented. The composite tubes have an initiator plug introduced at one open end (chamfered) while the other end is clamped. This procedure causes the tube to ‘flare’ outwards into fronds and results in the progressive failure of the tube in the axial and hoop direction without global tube buckling. Axial force and axial displacements are measured during these tests in order to assess energy absorption. In addition, readings from strain gages that are placed at critical locations on the tube walls are used to assess the state of strain on the tube walls away from the crush end. During a crush test, the axial load ascended to a maximum value and subsequently settled to a plateau value about which the load oscillated during the progressive crushing of the tube. The oscillations exhibited distinct periodicity. Results from an analytical model that best simulates the failure of these tubes are presented. The model is based on an axisymmetric formulation of the cylindrical shell equations in conjunction with ideas from classical fracture mechanics and continuum damage mechanics.


2010 ◽  
Vol 29 (20) ◽  
pp. 3104-3110 ◽  
Author(s):  
N. Merah ◽  
S. Nizamuddin ◽  
Z. Khan ◽  
F. Al-Sulaiman ◽  
M. Mehdi

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 463 ◽  
Author(s):  
Ke Chen ◽  
Mingyin Jia ◽  
Hua Sun ◽  
Ping Xue

In this paper, glass fiber-reinforced polyamide-6 (PA-6) composites with up to 70 wt% fiber contents were successfully manufactured using a pultrusion process, utilizing the anionic polymerization of caprolactam (a monomer of PA-6). A novel thermoplastic reaction injection pultrusion test line was developed with a specifically designed injection chamber to achieve complete impregnation of fiber bundles and high speed pultrusion. Process parameters like temperature of injection chamber, temperature of pultrusion die, and pultrusion speed were studied and optimized. The effects of die temperature on the crystallinity, melting point, and mechanical properties of the pultruded composites were also evaluated. The pultruded composites exhibited the highest flexural strength and flexural modulus, reaching 1061 MPa and 38,384 MPa, respectively. Then, effects of fiber contents on the density, heat distortion temperature, and mechanical properties of the composites were analyzed. The scanning electron microscope analysis showed the great interfacial adhesion between fibers and matrix at 180 °C, which greatly improved the mechanical properties of the composites. The thermoplastic reaction injection pultrusion in this paper provided an alternative for the preparation of thermoplastic composites with high fiber content.


Sign in / Sign up

Export Citation Format

Share Document