Experimental Investigation of Cut Profile in the Electrochemical Drilling of Titanium Alloy

2018 ◽  
Vol 777 ◽  
pp. 327-332
Author(s):  
Ornsurang Netprasert ◽  
Noppakao Chimyo ◽  
Suphaphich Phimphun ◽  
Jantakarn Sukjan ◽  
Viboon Tangwarodomnukun ◽  
...  

Electrochemical machining process is an advanced material removal technique offering high precision and introducing no heat damage to the work material. The shape and size of machined area are highly dependent on some process parameters such as voltage, electrolyte and inter-electrode gap. To further enable a more insight into the process performance, this paper investigates the influences of applied voltage, electrolyte concentration and inter-electrode gap on the shape and sizes of hole produced by the electrochemical drilling process. Titanium alloy (Ti-6Al-4V) was used as a work sample in this study as it has been extensively used in many advanced applications. The experimental result indicated that the use of high voltage and high electrolyte concentration can enlarge and deepen hole in the workpiece, while the inter-electrode gap provided less effect to the hole features. The maximum hole depth can reach 300 μm within 60 seconds when the applied voltage of 30 V, the inter-electrode gap of 10 μm and the electrolyte concentration of 10%wt were used. However, with this setup, the obtained cut profile became a non-uniform V-shaped hole. The use of lower voltage was instead recommended to yield a better cut quality with U-shaped profile.

2013 ◽  
Vol 634-638 ◽  
pp. 2839-2842
Author(s):  
Lih Wu Hourng ◽  
Bing Chi Li ◽  
Chen I Lai

The purpose of present paper is to fabricate tungsten rods with diameter of 200 μm to micro-pin electrodes, which have small conical angle and high aspect ratio, by the use of electrochemical machining process. The influence of working parameters, such as: applied voltage, electrolyte concentration, anode depth, and drawing speed on the machining process is investigated. Experimental results show that the applied voltage and electrolyte concentrate will affect the surface precision as the machining current is small than the limiting current. The anode immersed depth combined with a suitable drawing velocity has a significant effect on the conical angle (conicity) and aspect ratio.


2011 ◽  
Vol 55-57 ◽  
pp. 1275-1280 ◽  
Author(s):  
Jian Min Wu ◽  
Jia Wen Xu

While the surface of integral impeller blade was electrochemically machined, cathode cannot rotate in accordance with other movement axes, which results in nonuniformity in velocity of electrolyte and normal direction of the machining blade surface, thereby causing inaccuracy in the machined blade surface. In order to solve this problem, the shaping law was studied in Electrochemical Finish Machining. Then relative positions between cathode slot and blade surface were analyzed during the process of Electrochemical Machining (ECM). Three parameters, namely feed direction, feed velocity and initial machining inter-electrode gap, were adjusted to conduct the fundamental experiments when direction of cathode slot was changed. Afterwards machining accuracy as well as surface quality of workpiece was analyzed. Finally according to experimental results, direction of cathode slot was determined practically in electrochemical machining process and the integral impeller blades meeting the requirement were electrochemically machined.


2019 ◽  
Vol 30 ◽  
pp. 552-559
Author(s):  
Paiboon Choungthong ◽  
Bunchanit Wilaisahwat ◽  
Viboon Tangwarodomnukun

2009 ◽  
Vol 626-627 ◽  
pp. 351-356 ◽  
Author(s):  
Min Kang ◽  
Yong Yang ◽  
X.Q. Fu

A preliminary study of Numerical Controlled Electrochemical Turning (NC-ECT) technology was presented in this paper. NC-ECT is suitable for machining revolving workpieces which are made of difficult-to-cut materials or have low rigidity, and it is difficult or expensive for machining these workpieces by use of traditional turning or traditional Electrochemical Machining (ECM) method. To carry out the study, an experimental setup was developed on the basis of a common lathe, and a kind of inner-spraying cathode with rectangle section outlet was designed according to the process of machining cylindrical surface. First, the NC-ECT method was simply described. Then, considering the structure of the cathode and the process of machining, the method for calculating the inter-electrode gap in machining the cylindrical surface was given. Finally, the experiments of machining the cylindrical surface were carried out. Experiments showed that the calculated inter-electrode gaps are well consistent with the actual value of the machining process, which decreases with the increase of the rotational speed of workpiece and increases almost linearly with the increase of the working voltage. Experiments also showed that the inter-electrode gap keeps a certain relationship with the working current, the inter-electrode gap can be controlled according to working current in the machining process.


2015 ◽  
Author(s):  
Zengwei Zhu ◽  
Dengyong Wang ◽  
Jun Bao ◽  
Di Zhu

A special electrochemical machining (ECM) process using a revolving cathode tool with hollow windows is presented. Unlike conventional sinking ECM, this presented ECM process fabricates the convexity structures on a revolving part by the relative rotation of anode workpiece and cathode tool. In this paper, a mathematical model is established to describe the evolution of the machining process, the finite element simulations of the new forming fashion are focused for the workpiece’s revolving surface and the convexity’s side profile. The simulation results show that both the cathode feed rate and the applied voltage have significant influence on the equilibrium inter-electrode gap and the material removal rate. The side profile of the convexity is related to radius of the cathode tool. It is expected that the equilibrium gap and steady removal rate could be achieved by optimizing the cathode feed rate and the voltage, the required side profile taper of the convexity could be obtained by selecting the proper tool radius.


Mechanik ◽  
2017 ◽  
Vol 90 (12) ◽  
pp. 1102-1109
Author(s):  
Adam Ruszaj

Electrochemical machining process (ECM) can be applied for efficient shaping advanced materials conducting electrical current, which are difficult or impossible for machining using conventional methods. In electrochemical machining, the workpiece is an anode and material is removed as a result of electrochemical reactions “atom by atom” without mechanical forces. This mechanism of material removal make it possible to obtain high quality of machined surface layer with uniform properties. The very important advantage of ECM process is also the fact that there is not a tool wear (working electrode – cathode), because the equivalent reaction to anodic dissolution is hydrogen generation on cathode surface and hydrogen can be easily removed from, the inter-electrode gap by electrolyte flow. Because of this advantages, the ECM process is widely applied in space, aircraft, car and electromechanical industry and research stimulating ECM development are carried out.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
T. Praveena Gopinath ◽  
J. Prasanna ◽  
C. Chandrasekhara Sastry ◽  
Sandeep Patil

Abstract An attempt has been made to study the influence of magnetic field on the micro hole machining of Ti-6Al-4V titanium alloy using electrochemical micromachining (ECMM) process. The presence of magneto hydro dynamics (MHD) is accomplished with the aid of external magnetic field (neodymium magnets) in order to improve the machining accuracy and the performance characteristics of ECMM. Close to ideal solution for magnetic and nonmagnetic field ECMM process, the parameters used are as follows: concentration electrolyte of 15 g/l; peak current of 1.35 A; pulse on time of 400 s; and duty factor of 0.5. An improvement of 11.91–52.43% and 23.51–129.68% in material removal rate (MRR) and 6.03–21.47% and 18.32–33.09% in overcut (OC) is observed in ECMM of titanium alloy under the influence of attraction and repulsion magnetic field, respectively, in correlation with nonmagnetic field ECMM process. A 55.34% surface roughness factor reduction is ascertained in the hole profile in magnetic field-ECMM in correlation with electrochemical machined titanium alloy under nonmagnetic field environment. No machining related stress is induced in the titanium alloy, even though environment of electrochemical machining process has been enhanced with the presence of magnetic field. A slight surge in the compressive residual factor, aids in surge of passivation potential of titanium alloy, resulting in higher resistance to outside environment.


2017 ◽  
Vol 900 ◽  
pp. 110-115
Author(s):  
Ismail Ovali ◽  
Ahmet Mavi

Drilling is the most used machining process in the assemble of Glass/epoxy composites. Material removing leads to damage and delamination in the drilling process. The present paper deals the effect of drill wt.% of multi walled carbon nanotubes (MWCNTs) on the drilling of glass/epoxy composites in term of torque and push-out delamination. Glass/epoxy composites manufactured by using pre-preg method. The filled rates were considered as 0.5, 1 and 2 wt.%. MWCNTs. Also, the unfilled composite samples were used for comparison. Various cutting speeds (40, 50 and 60 m/min) and feed rates (0.075, 0.1 and 0,125 mm/rev) for coated drills were used. The experimental result showed that the machinability properties of glass/epoxy composites samples can be improved with filling MWCNTs. Higher cutting speed and feed rate increase delamination. Push-out more severe than that of peel-up delamination.


Author(s):  
Bijan Mallick ◽  
Sumit Biswas ◽  
Biplab Ranjan Sarkar ◽  
Biswanath Doloi ◽  
Bijoy Bhattacharyya

The electro-chemical discharge micro-machining (µ-ECDM) process can be utilised as a potential micro-machining process, which offers several advantages such as cost-effectiveness and diversity in applications on electrically non-conducting hard brittle materials like glass. The present research article includes the analysis of material removal rate (MRR), width of cut (WOC), heat affected zone (HAZ), and surface roughness (Ra) during µ-channeling on glass with a micro-ECDM process, considering applied voltage (V), electrolyte concentration (wt%), and tool shapes as process parameters. A comparative study is conducted to select the suitable tool shape and electrolyte. Moreover, the optical and SEM images are used to examine HAZ, WOC and topography of µ-channels. MRR and WOC enhance with the rise of applied voltage for fixed electrolyte concentration and vary with tool shape. Surface roughness (Ra) is found low at applied voltage of 55V and 60V for both electrolytes when straight and curved tools, respectively, are used. The straight tool shape is more suitable for µ-channeling on glass by µ-ECDM.


Author(s):  
Lingguo Yu ◽  
Dong Zhu ◽  
Yujun Yang ◽  
Jibin Zhao

Cathode design plays an important role in the electrochemical machining of aero engine blades and is a core issue influencing machining accuracy. Precision electrochemical machining of the leading edge of a twisted blade is particularly difficult. To improve the electrochemical machining accuracy of the leading edge, this article deals with cathode design by optimizing the design plane based on the three-dimensional potential distribution in the inter-electrode gap. A mathematical model is established according to the electrochemical machining shaping law, and the formation of the blade leading edge is simulated using ANSYS. The simulation results show that the blade leading-edge profile obtained with the optimized planar cathode is more consistent with the blade model profile. The optimized planar cathode and a non-optimized planar cathode are designed and a series of corresponding electrochemical machining experiments is carried out. The experiments show that the electrochemical machining process is stable and that the surface quality near the leading edge of the samples is slightly better than that of the body surface. Compared with the non-optimized planar cathode, the allowance difference at the leading-edge vertex is decreased by 0.062 mm. Using the optimized planar cathode allows fabrication of a workpiece whose shape is similar to that of the designed twisted blade.


Sign in / Sign up

Export Citation Format

Share Document