Structural Characterization of Mg-0.5Ca-xY Biodegradable Alloys

2018 ◽  
Vol 782 ◽  
pp. 129-135 ◽  
Author(s):  
Bogdan Istrate ◽  
Corneliu Munteanu ◽  
Ștefan Lupescu ◽  
Vasile Iulian Antoniac ◽  
Eusebiu Sindilar

In recent years, researchers have been able to identify new materials with special properties that can be used in major medical fields. Magnesium-based materials used in orthopedics are an important alternative, being the third generation of biocompatible materials. A biodegradable magnesium-based material has the ability to degrade at a certain rate, is biocompatible, and together with other alloying elements ensures osteointegration. Mg-0.5Ca-xY biodegradable alloys will be developed in an induction melting furnace using ceramic crucibles, melting at 710-720 °C in the controlled atmosphere of 5.0 Ar. SEM analyses and X-ray diffraction reveals the size distribution of Mg-sized grains, with a hexagonal lattice and formation of compounds with the two alloying elements: Mg2Ca, Mg2Y, Mg24Y5uniformly arranged in the α-Mg matrix. The alloying elements influence the microstructure, the size of the α-Mg grains decreasing considerably.

2006 ◽  
Vol 21 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Thomas N. Blanton

Characterization of materials used in the digital imaging industry has been performed using micro X-ray diffraction (microXRD) techniques. Case studies are described that demonstrate the use of microXRD for identification of phases, texture, and microstructure morphology of components used in imaging applications.


Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Andrea Gil-Torrano ◽  
Auxiliadora Gómez-Morón ◽  
José María Martín ◽  
Rocío Ortiz ◽  
Mª del Camino Fuertes Santos ◽  
...  

The archaeological site of Cercadilla (Cordoba, Spain) includes a complete chronological sequence from the 3rd to 12th centuries. The most relevant monument is a Roman palace dated between the end of the 3rd century and the beginning of the 4th century AD. It is believed that it was the headquarters of the Emperor Maximiano Herculeo. A bathtub with mural paintings has been found in the thermal zone of the palace. Regarding the occupation of the archaeological site in the medieval period, it should be pointed out that two houses with mural paintings were found; these belong to the Caliphal era (10th-11th centuries). During the Caliphal era, the archaeological site was mostly occupied by one of the large suburbs surrounding the walled city. Cercadilla was gradually abandoned; this process starts at the beginning of the 11th century. This study is focused on the analysis of pigments and preparatory layers of red and white mural paintings of the Roman period in the bath zone and on the analysis of pigments in mural paintings in two houses of the Caliphal era. In the thermal zone, the walls have a white mural painting with vertical and horizontal red bands, while the walls in the two Caliphal houses present the red mural painting decorated with white stripes. Techniques such as Optical Microscopy (OM), Scanning Electron Microscopy in combination with Energy Dispersive X-ray Microanalysis (SEM-EDX), X-ray Diffraction (XRD), micro X-ray Diffraction (μ-XRD), Wavelength Dispersive X-ray Fluorescence (WD-XRF), and Fourier Transform-Infrared Spectroscopy (FT-IR) have been used to study the mural paintings of this archaeological site. The results allowed to determine the composition of the materials used and to understand the differences between the technologies employed in Roman and Caliphal remains studied.


2019 ◽  
Vol 25 (6) ◽  
pp. 1471-1481
Author(s):  
Tea Zubin Ferri ◽  
Emina Pustijanac ◽  
Ines Kovačić ◽  
Josipa Bilić

AbstractThe aim of the present study was to map the painting materials, degradation processes, and biological features present on the mural painting in the church of St. Mary in Beram (Croatia) to study their possible interaction and produce information helping the preservation of this valuable painting. The research was conducted on micro samples of painting materials taken from different sites along the painting and the characterization of the present fungal species was carried out. The painting samples, together with observable patinas and degradation products, were studied by optical microscopy (OM), scanning electron microscopy, energy-dispersive spectroscopy (SEM/EDS), Fourier-Transform Infrared spectroscopy, and powder X-ray diffraction. Fungal diversity was studied using cultivation methods followed by OM and SEM analyses in addition to molecular analysis. The results contribute to the characterization of the original painting materials, successively added materials and occurred interventions, to the understanding of degradation progressions and fungal biotransformation processes. A mineral, cumengite, a copper-based pigment extremely rarely used in art, was found. Its occurrence together with barium sulfate, gypsum, and calcium oxalate possibly produced by microbiological activity was studied and information was added regarding the composition of painting materials in St. Mary church mural cycle.


2020 ◽  
Vol 42 (1) ◽  
pp. 70-70
Author(s):  
Ismail Topcu Ismail Topcu ◽  
Burcu Nilg n etiner Burcu Nilg n etiner ◽  
Arif N G ll o lu and zkan G lsoy Arif N G ll o lu and zkan G lsoy

This study investigates the effects of addition of Carbon nanotube (CNT) at different volume ratios (0.5- 5%) into Ti6Al4V matrix by mechanical alloying in terms of the density, microstructure, hardness and creep under dynamic load. As a result of the good bonding of carbon nanotubes powders with the main matrix, Ti-6Al-4V/CNT composites have experienced change both in microstructure and mechanical properties (such as hardness, density) and, correspondingly, qualitatively creep behaviour of Ti-6Al - 4V matrix alloy has been improved compared to the lean one. The density of CNT reinforced Ti6Al4V composites sintered at 1300and#176;C for 3h decreases with increasing CNT content. The hardness tests indicated that the hardness of composites increased with CNT addition. In addition, although creep strain is decreased continually with CNT content until 5%, creep life increased with increasing CNT content until 4% of CNT but decreased above 4%. After sintering at 1300 and#176;C under vacuum for 3 hours the density of the composite material reached to a level of 98.5 %, the microhardness to 538 HV and the creep behaviour was improved. The characterization of Ti6Al4V / CNT composites after mechanical alloying was carried out using scanning electron microscopy (SEM), energy dispersive x-rays spectroscopy (EDS) analysis and X-ray diffraction (XRD) methods. Although Ti–6Al–4V alloys are used as biomaterial, this study aimed at using MWCNTs containing Ti-6Al-4V composites at high temperature applications. Because MWCNTs reinforced Ti-6Al-4V composites are cheaper and have lower weight than the other materials used in this kind of applications.


2011 ◽  
Vol 264-265 ◽  
pp. 1370-1375 ◽  
Author(s):  
S. Sarfraz ◽  
B. Naseem ◽  
S. Amin ◽  
M. Mujahid

Hydroxyapatite (HA) is considered to form major component of bones and teeth. Synthesis of hydroxyapatite (Calcium phosphate, Ca10(PO4)6(OH)2) was carried out to produce nano powders. The size and shape of nano particles was controlled during synthesis by using templates of Cetyl Trimethyl Ammonium Bromide (CTAB). A cationic surfactant, CTAB creates micellar structures which would act as nano reactors for the synthesis of nano scale HA. Yield of the final product has also been examined by varying the surfactant concentration. X-ray diffraction data revealed characteristic peaks of HA, where a predominantly hexagonal lattice structure could be deduced. FTIR was used to observe the various chemical groups present in the product. Scanning electron microscope was used for the characterization of nano particles.


2021 ◽  
Vol 14 (1) ◽  
pp. 6-11
Author(s):  
Dyah Setyaningrum ◽  
Sujiat Sujiat ◽  
Aprilia Nur Azizah

Clay material from Rendeng, Malo, Bojonegoro was studied by mineralogy and physicochemical characterization to evaluate its potential suitability as a raw material in pottery application. X-ray Diffraction (XRD) and Fourier Transform-Infrared (FTIR) spectrometry were used to establish the mineralogy composition. Meanwhile the physical properties were identified by particle size distribution and consistency limits. Chemical composition was carried out by X-ray Fluorescence Spectrometer (XRF).  The results of XRD characterization revealed that clay from Rendeng Village, Malo, Bojonegoro contained  kaolin, quartz, and feldspar. Physical characterization shows that clay material is a less plastic type based on Atterberg method. Based on the chemical compositions indicated that SiO2, Al2O3, CaO, and Fe2O3 were abundance oxides. Therefore, clay from Desa Rendeng was only suitable for the pottery purposes because most of its mineral compositions did not meet the quality requirements for making advanced ceramics.


2014 ◽  
Vol 1077 ◽  
pp. 135-138
Author(s):  
Luiz Oliveira Veriano dalla Valentina ◽  
Marilena Valadares Folgueras ◽  
Wanessa Rejane Knop ◽  
Maria Cristina Pacheco do Nascimento ◽  
Glaucia Aparecida Prates

As the raw materials used in the ceramic materials manufacturing are natural, it is important to use them as a alternative materials, thus decreasing the elements demand taken from nature. This paper aims the characterization of foundry solid powder exhaust from a brazilian company located in Joinville - SC as an alternative raw material for ceramic coating by X-ray diffraction (XRD), thermal analysis (DSC) and thermogravimetric (TG). The dust depletion is caused in the manufacturing mold sand process, when the bentonita (clay), silica sand and coal during the metal parts production are mixed in green sand production. The raw materials were characterized through X-ray diffraction (XRD), thermal (DSC) and thermogravimetric analisys (TG). The atomized powder thermogravimetric analysis curve shows three intervals associated with the mass loss and it is typical of clay commercial application.


2016 ◽  
Vol 869 ◽  
pp. 191-194
Author(s):  
Carolina del Roveri ◽  
R.A. Cunha ◽  
Antenor Zanardo ◽  
Letícia Hirata Godoy ◽  
Maria Margarita Torres Moreno ◽  
...  

The Santa Gertrudes ́ Ceramic Polo is the Brazilian region with national and international prominence in the manufacturing of ceramic tiles. Some raw materials used by ceramic industry and coatings industries in this region were characterized in terms of chemical-mineralogical and microscopic view, in order to promote the best technological characterization of them. For this, chemical analysis of major elements and trace X-ray diffraction and microscopic analysis by SEM, TEM and Electron microprobe were performed by ICP-MS. The results showed that the raw materials commonly referred to as "clays" are actually constituted by various mineral phases, which directly influence the properties of the same ceramics. Also showed that, by virtue of this constitution, different formulations can be developed, using the best raw materials found in the region of Santa Gertrudes, SP.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Liping Zheng ◽  
Liqin Wang ◽  
Xing Zhao ◽  
Jiali Yang ◽  
Mengxia Zhang ◽  
...  

AbstractIn this study, in order to analyze the materials and techniques used for the production of the inscribed plaques, multi-analytical scientific approach, including optical microscopy (OM), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDS), X-ray diffraction (XRD), micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR), and micro-Raman spectroscopy (μ-Raman), were used to explore the materials and techniques utilized to create the “Chun Rong Xuan Mao” birthday inscribed plaque of the Qing Dynasty. The results showed that the plaque was made of cypress wood and decorative parts consisting of the surface lacquer layers, plaster lacquer layers and primer lacquer layers. Chinese lacquer was the principal material used in the surface lacquer layers; gypsum and Chinese lacquer were the materials used in the plaster lacquer layers; and the primer lacquer layers was composed of Chinese lacquer, calcite, and mixed pigments by cinnabar and minium. The surface lacquer layers of the inscribed plaque were lacquered black. Gypsum lacquer plaster has been commonly used in the ground layer of lacquerware in modern history. This study confirmed the existence of technology to make lacquerware using gypsum lacquer plaster in the Bashu area during the late Qing Dynasty. Moreover, this study not only provides new findings regarding the traditional production of inscribed plaques and offers technical support for the protection and restoration of such plaques but also has great significance to exploring the history of ancient techniques of lacquering and decorating lacquerware.


1996 ◽  
Vol 465 ◽  
Author(s):  
I. A. Sobolev ◽  
M. I. Ojovan ◽  
O. K. Karlina ◽  
S. V. Stefanovsky ◽  
V. E. Galtsev

ABSTRACTInduction melting by using a cold crucible is a suitable technology for the immobilisation of ash residues after incineration of solid radioactive waste. We investigated the possibility of using glass composites produced by stirring the ash into meltedglass. Glass composites containing 15 -40 wt. % of ash were obtained in both laboratory and bench scale units. Infrared spectroscopy, electronic paramagnetic resonance, X-ray diffractometry, TEM and SEM analyses were applied in order to characterise the structure of the glass composites obtained. The glass composites consisted of a relatively homogeneous glass matrix with embedded polycrystalline aggregates. The fraction of aggregates increases when the fraction of ash rises. The isothermal curing of composites at 1100 °C leads to dissolution of the ash components into the melt as well as to their inclusion into the glass structure, according to the analysis of the spectra obtained.


Sign in / Sign up

Export Citation Format

Share Document