Effect of Material Property Difference on the Creep Behavior of Bending Specimen

2019 ◽  
Vol 795 ◽  
pp. 375-382 ◽  
Author(s):  
Fa Kun Zhuang ◽  
Shan Tung Tu ◽  
Guo Shan Xie ◽  
Luo Wei Cao

The application of small specimen testing techniques in the evaluation of creep properties of materials in-service arise. In order to acquire the creep data accurately and conveniently, the bending test with small beam specimens has been proposed and validated for the metal materials. Initially, the fact that material behaves different creep rates under tension and compression is ignored for simplification. Thus, the effect of material property difference on the creep behavior of bending specimen is analyzed in the present paper. On the basis of Norton creep law, the deformation behavior of three type’s specimens under tension and compression is theoretically described. Assumed different creep exponents and constants, finite element models of these beam bending specimens are established. The creep response is simulated. Meanwhile, the effect of material property under different stress state is further investigated. The results show that the stress exponent has a significant effect on the creep curves. Usually, the stress exponent can be evaluated based on the displacement rate or strain rate. However, if large discrepancy of creep properties under tension and compression exits, it will yield disparate results for the steady-state stress exponent. It is suggested that the stress exponent determined solely by bending test should be accepted with a certain degree of reliability, especially for the non-metal materials.

2010 ◽  
Vol 638-642 ◽  
pp. 1596-1601 ◽  
Author(s):  
Yang Shan Sun ◽  
Jing Bai ◽  
Feng Xue

The creep behavior of two series of magnesium alloys, Mg-4Al based alloys with strontium addition and binary Mg-Nd alloys, has been studied. Results show that the high creep properties achieved by the Mg-Nd alloys are attributed to the precipitation of tiny dispersed β’ particles, which form and effectively restrict the dislocation slipping and climb during creep deformation. In terms of values of the stress exponent and apparent activation energy gained from systematic creep tests, the mechanism responsible for creep deformation of the Mg-Nd alloys is inferred as dislocation climb, which is supported by TEM observations performed on the Mg-2Nd alloy after creep test. For the Mg-4Al based alloys, however, microstructural observations reveal that the significant improvement on creep properties caused by Sr addition is accounted for the formation of an interphase network consisting of Al4Sr and a Mg-Al-Sr ternary compound distributing at grain boundaries. The breakage of the interphase network after extrusion results in a sharp drop of creep properties, indicating the creep deformation of the alloy is controlled mainly by grain boundary sliding, which is in contradiction to the mechanism for creep of the alloys inferred by the classical criterions based on the values of stress exponent and apparent activation energy.


2018 ◽  
Vol 8 (9) ◽  
pp. 1626 ◽  
Author(s):  
Wei Guo ◽  
Xuedong Guo ◽  
Xing Chen ◽  
Wenting Dai

Open graded friction course (OGFC) is a high permeable mixture used to reduce noise, improve friction. However, limitations with the use of OGFC are due to the relatively low strength and stiffness. Therefore, investigating environmental and economic benefits, as well as service life of OGFC technology is the future of the pavement. In this study, a new modified OGFC (SM-OGFC) was prepared by replacing the fine aggregate below 4.75 mm in OGFC with the oil shale waste (OSW), and the silane coupling agent modifier was used to assist modification. The preparation process of SM-OGFC was optimized by central composite design, to obtain an SM-OGFC with the best mechanical properties. The Marshall test, rutting test, −15 °C splitting test, −10 °C beam bending test, immersion Marshall test, spring-thawing stability test, Cantabro test and permeability test were conducted to evaluate the properties of SM-OGFC. The results prove that SM-OGFC has excellent overall performance in comparison with OGFC and styrene-butadiene-styrene (SBS) modified OGFC. Furthermore, Scanning Electron Microscopy (SEM) observation illustrates that the unique laminar columnar connected structure and cell-like structure antennae of OSW could be the main reasons why SM-OGFC obtained excellent performance. Furthermore, economic analysis indicated that the SM-OGFC mixture had higher cost effectiveness.


2005 ◽  
Vol 488-489 ◽  
pp. 749-752 ◽  
Author(s):  
Su Gui Tian ◽  
Keun Yong Sohn ◽  
Hyun Gap Cho ◽  
Kyung Hyun Kim

Creep behavior of AM50-0.4% Sb-0.9%Gd alloy has been studied at temperatures ranging from 150 to 200°C and at stresses ranging from 40 to 90 MPa. Results show that the creep rate of AM50-0.4%Sb-0.9%Gd alloy was mainly controlled by dislocation climb at low stresses under 50 MPa. The activation energy for the creep was 131.2 ± 10 kJ/mol and the stress exponent was in the range from 4 to 9 depending on the applied stress. More than one deformation-mechanism were involved during the creep of this alloy. Microstructures of the alloy consist of a–Mg matrix and fine particles, distinguished as Mg17Al12, Sb2Mg3, and Mg2Gd or Al7GdMn5 that were homogeneously distributed in the matrix of the alloy, which effectively reduced the movement of dislocations, enhancing the creep resistance. Many dislocations were identified to be present on non-basal planes after creep deformation.


2020 ◽  
Vol 62 (10) ◽  
pp. 1003-1009
Author(s):  
Yantao Sun ◽  
Jia Huang ◽  
Duoqi Shi ◽  
Shengliang Zhang ◽  
Zhizhong Fu ◽  
...  

Abstract Comprehensive characterization mechanical properties of aerogels and their composites are important for engineering design. In particular, some aerogel composites were reported to have varied tension and compression moduli. But conducting tension tests is difficult for the reason that low strength and brittleness will lead to unexpected failure in the non-test area. A method is presented for measuring both the tension and compression moduli of a ceramic-fiber reinforced SiO2 aerogel composite by bending via digital image correlation. First, the relationship between bending behavior and the tension/compression moduli was introduced for bimodular materials. Then a bending test was conducted to predict tension and the compression moduli of the ceramicfiber- reinforced SiO2 aerogel composite via digital image correlation. In addition, uniaxial tension and compression tests of the aerogel composites were carried out, respectively for measuring tension and compression moduli. The tension and compression moduli measured were numerically similar to results obtained from uniaxial tests with a difference of less than 14 %.


1994 ◽  
Vol 364 ◽  
Author(s):  
C.R. Feng ◽  
K. Sadananda

AbstractThe grain size effect on the creep behavior of hot-pressed monolithic molybdenum disilicide was investigated at 1200°C in a 19–255 MPa stress range. The creep-stress exponent, n, increased from 1 at low stresses to 4 at high stresses. The grain size exponent, p, varied from 0, to 3.5 and to 8 depending on the grain size, the creep-stress exponent, and creep history.


Author(s):  
Karl Christoph Meiwes ◽  
Susanne Höhler ◽  
Marion Erdelen-Peppler ◽  
Holger Brauer

During reel-laying repeated plastic strains are introduced into a pipeline which may affect strength properties and deformation capacity of the line pipe material. Conventionally the effect on the material is simulated by small-scale reeling simulation tests. For these, coupons are extracted from pipes that are loaded in tension and compression and thermally aged, if required. Afterwards, specimens for mechanical testing are machined from these coupons and tested according to the corresponding standards. Today customers often demand additional full-scale reeling simulation tests to assure that the structural pipe behavior meets the strain demands as well. Realistic deformations have to be introduced into a full-size pipe, followed by aging, sampling and mechanical testing comparable to small-scale reeling. In this report the fitness for use of a four-point-bending test rig for full-scale reeling simulation tests is demonstrated. Two high-frequency-induction (HFI) welded pipes of grade X65M (OD = 323.9 mm, WT = 15.9 mm) from Salzgitter Mannesmann Line Pipe GmbH (MLP) are bent with alternate loading. To investigate the influences of thermal aging from polymer-coating process one test pipe had been heat treated beforehand, in the same manner as if being PE-coated. After the tests mechanical test samples were machined out of the plastically strained pipes. A comparison of results from mechanical testing of material exposed to small- and full-scale reeling simulation is given. The results allow an evaluation of the pipe behavior as regards reeling ability and plastic deformation capacity.


2014 ◽  
Vol 472 ◽  
pp. 649-653
Author(s):  
Hui Cun Shen ◽  
Kui Tian ◽  
Yan Hua Hu

Resin concrete is a new material which can be made into machine bed instead of the traditional pieces of gray cast iron as the machine base, it can improve the dynamic stiffness of machine tools and the quality of machined parts, and extend the campaign life, reduce noise and improve efficiency. However, due to the long-term effect of load of the resin concrete, the elastic deformation occurs in its component, and the strain will increase over time. Thus it can affect the resin concretes service life, and the calculation of creep has become an urgent task in structure design and use, which should be taken seriously. In this paper, the bending creep properties of resin concrete beam were studied and analyzed by using four-point bending test method. The creep curve under different load levels were obtained, and the viscoelastic properties were analyzed.


Sign in / Sign up

Export Citation Format

Share Document