Fatigue Life Properties of Stainless Steels in Wide Ranged Biaxial Stress State

2019 ◽  
Vol 795 ◽  
pp. 60-65
Author(s):  
Shunsuke Saito ◽  
Fumio Ogawa ◽  
Takamoto Itoh

Multiaxial fatigue tests consisting of push-pull loading and cyclic inner pressure were carried out using hollow cylinder specimens of type 430 stainless and type 316 stainless steels at room temperature. 7 types of cyclic loading paths were employed by combining axial and hoop stresses: a Pull, an Inner-pressure, a Push-pull, an Equi-biaxial, a Square-shape, a LT-shape and a LC-shape. Fatigue lives vary depending on the loading path when those were evaluated by the maximum Mises’ equivalent stress on inner surface of the specimen. The fatigue lives of both the steels showed a similar tendency although some Pull tests take longer fatigue life when cracks initiated from inside surface of the specimen. This study investigated the crack initiation and propagation behaviors as well as the initiation of oil leakage to prove the behavior and discusses life evaluation for two steels under wide ranged biaxial stress state, too.

2019 ◽  
Vol 300 ◽  
pp. 09004
Author(s):  
Shunsuke Saito ◽  
Fumio Ogawa ◽  
Takamoto Itoh

Stress controlled multiaxial fatigue tests were carried out using hollow cylinder specimens of type 430 and 316 stainless steels at room temperature. A newly developed fatigue testing machine which can apply push-pull loading and inner pressure to the specimen was used. For inner pressure, oil was put inside of the specimen. 7 types of cyclic loading paths were employed by combining axial and hoop stresses; a Pull, an Inner-pressure, a Push-pull, an Equi-biaxial, a Square-shape, a LT-shape and a LC-shape. Fatigue lives vary depending on the loading path when those were evaluated by the maximum Mises’ equivalent stress range on inner surface of the specimen. The fatigue lives of both the steels showed a similar tendency. However, the following difference was identified. Specifically, differences in fatigue lives of type 430 stainless steel between the uniaxial loading and the multiaxial tests were large, while those of type 316 stainless steel were small. To discuss difference in fatigue life properties between both steels, this study investigates the effect of the shear stress range, mean stress and additional hardening and which leads to evaluate the lives suitably.


Author(s):  
Leonardo Borgianni ◽  
Paola Forte ◽  
Luigi Marchi

Gears can show significant biaxial stress state at tooth root fillet, due to the way they are loaded and their particular geometry. This biaxial stress state can show a significant variability in principal axes during meshing. Moreover loads may have non predictable components that can be evaluated with the aid of recorded data from complex spectra. In these conditions, commonly adopted approaches for fatigue evaluation may be unsuitable for a reliable fatigue life prediction. This work is aimed at discussing a computer implementation of a fatigue life prediction method suitable for multiaxial stress states and constant amplitude or random loading. For random loading a counting procedure to extract cycles from complex load histories is discussed. This method, proposed by Vidal et al., is based on the r.m.s. value of a damage indicator over all the planes through the point where the fatigue life calculation is made. Miner’s rule is used for the evaluation of the overall damage. The whole fatigue life of the component is evaluated in terms of the numbers of repetitions of the loading block. FEM data are used to evaluate stresses under load. The implementation was validated using test data found in the technical literature. Examples of applications to gears are finally discussed.


2019 ◽  
Vol 28 (9) ◽  
pp. 1323-1343 ◽  
Author(s):  
Bowen Liu ◽  
Xiangqiao Yan

In this paper, based on the thought of Modified Wöhler Curve Method (MWCM), a new general model for predicting multiaxial fatigue life with influence of mean stress is presented. Different from the MWCM, the expressions of multiaxiality effect and mean stress effect are located separately in the proposed fatigue equation, so that the new model can consider the impact of both axial and torsional mean stresses, and the equation form possesses excellent extendibility and variability. The wildly used von Mises equivalent stress is adopted as the fatigue parameter to improve computational efficiency. Finally, in conjunction with the Itoh criterion, the model can be trivially extended to perform non-proportional fatigue prediction with different mean stresses. Some representative fatigue tests published in the previous literature are used to verify this study.


2012 ◽  
Vol 730-732 ◽  
pp. 757-762
Author(s):  
Luís G. Reis ◽  
Vitor Anes ◽  
Bin Li ◽  
Manuel de Freitas

The unexpected collapse of engineering structures is often caused by the fatigue phenomenon resulting from degradation of mechanical properties of materials due to multiaxial cyclic loadings. The interpretation of such degradation is a topic of intensive research in multiaxial fatigue. The fatigue strength is commonly evaluated by the equivalent stress based on the shear stress in the octahedral plane. However, the use of this kind of equivalent stress in the multiaxial fatigue criteria has been proven to be inappropriate. The degradation of mechanical properties of materials is dependent on several factors, e.g. the loading path has a strong influence on the fatigue strength. Non-proportional loadings cause higher damage in materials than proportional loadings for the same maximum equivalent stress. The purpose of this work is to study the effect of different multiaxial loadings on the 42CrMo4 steel and to improve the understanding about the relation between the fatigue strength and the sequential loading proportionality. The considered loadings were defined with the same history but with different load sequences and equivalent stress. To implement this work a biaxial servo-hydraulic fatigue machine was used. The fatigue life and crack angle were measured for each specimen. An analysis was made in order to correlate the crack initiation and fatigue life with the theoretical models, some remarks regarding these topics are presented.


2018 ◽  
Vol 165 ◽  
pp. 16007
Author(s):  
Martin Garcia ◽  
Claudio A. Pereira Baptista ◽  
Alain Nussbaumer

In this study, the multiaxial fatigue strength of full-scale transversal attachment is assessed and compared to original experimental results and others found in the literature. Mild strength S235JR steel is used and an exploratory investigation on the use of high strength S690QL steel and the effect of non-proportional loading is presented. The study focuses on non-load carrying fillet welds as commonly used in bridge design and more generally between main girders and struts. The experimental program includes 33 uniaxial and multiaxial fatigue tests and was partially carried out on a new multiaxial setup that allows proportional and non-proportional tests in a typical welded detail. The fatigue life is then compared with estimations obtained from local approaches with the help of 3D finite element models. The multiaxial fatigue life assessment with some of the well-known local approaches is shown to be suited to the analysis under multiaxial stress states. The accuracy of each models and approaches is compared to the experimental values considering all the previously cited parameters.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1194
Author(s):  
Rafael Tobajas ◽  
Daniel Elduque ◽  
Elena Ibarz ◽  
Carlos Javierre ◽  
Luis Gracia

Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the specific studied material and type of specimen used for the experimental testing. This work focuses on the development of a new generalized model of multiaxial fatigue for rubber materials, introducing a multiparameter variable to improve fatigue life prediction by considering simultaneously relevant information concerning stresses, strains, and strain energies. The model is verified through its correlation with several published fatigue tests for different rubber materials. The proposed model has been compared with more than 20 different parameters used in the specialized literature, calculating the value of the R2 coefficient by comparing the predicted values of every model, with the experimental ones. The obtained results show a significant improvement in the fatigue life prediction. The proposed model does not aim to be a universal and definitive approach for elastomer fatigue, but it provides a reliable general tool that can be used for processing data obtained from experimental tests carried out under different conditions.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3396
Author(s):  
Tomáš Návrat ◽  
Dávid Halabuk ◽  
Petr Vosynek

This paper focuses on the analysis of the plasticity effect in the measurement of the residual stress by the hole-drilling method. Relaxed strains were evaluated by the computational simulation of the hole-drilling experiment using the finite element method. Errors induced by the yielding were estimated for uniaxial tension, plane shear stress state and equi-biaxial stress state at various magnitudes of residual stress uniformly distributed along the depth. The correction of the plasticity effect in the evaluation of residual stress was realized according to the method proposed by authors from the University in Pisa, which was coded in MATLAB. Results obtained from the MATLAB script were compared to the original input data of the hole-drilling simulation and discussed. The analyses suggested that the plasticity effect is negligible at the ratio of applied equivalent stress to yield stress, being 0.6, and that the correction of the plasticity effect is very successful at the previous ratio, being 0.9. Failing to comply with the condition of the strain gauge rosette orientation according to the principal stresses directions causes an increase in the relative error of corrected stresses only for the case of uniaxial tension. It affects the relative error negligibly for the plane shear and equi-biaxial stress states.


Sign in / Sign up

Export Citation Format

Share Document