Effect of Welding Processes on Mechanical and Microstructural Characteristics of DP780 Steel Welded Joints for the Automotive Industry

2020 ◽  
Vol 835 ◽  
pp. 101-107
Author(s):  
Khalid M. Hafez ◽  
Mohamed Mosalam Ghanem ◽  
Hamed A. Abdel-Aleem ◽  
Naglaa Fathy

Arc welding processes are widely used in the automotive industry among other welding processes. Consequently, laser welding technology is being used instead of arc welding due to the rapid heating and cooling characteristics of the laser. In this study, empirical investigations and comparative study are held out on the arc and laser beam welded joints of DP780 dual-phase steel. Accordingly, weld joint microstructures, hardness distribution, and fatigue properties cross the butt-welded joints were investigated. The results showed that laser beam welding produces narrow fusion and heat-affected zones while gas metal arc welding produced wide welds with incomplete penetration. It was observed that the microstructure of the laser joint weld metal has mainly lath martensite in the ferritic matrix, while microstructure of gas metal arc weld metal relies upon filler type. Heat-affected zone in DP780 steel exhibit hardness softening in both laser beam welding and gas metal arc welding due to martensite tempering, a wider softening region was clearly observed in heat-affected zone welded by gas metal arc welding than laser beam welding. Generally, fatigue ratio, fatigue limit and fatigue life of the welded joints were improved by using laser welding.

Author(s):  
A Mathieu ◽  
I Tkachenko ◽  
JM Jouvard ◽  
I Tomashchuk

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drilled in the workpiece using dye-sinking Electrical Discharge Machining (EDM) machine. Before the implantation in the hole, each thermocouple is surrounded by Inconel sheathing. Hot junctions of the thermocouples are positioned in a way to feel two advancing molten pools. The equivalent heat source is composed of three sources. First one is a Goldak source that represents the molten pool induced by gas metal arc welding. The second one is a cylinder with an elliptic cross-section that represents the focused laser beam penetrating into the workpiece. The third one is a surface Gaussian source that represents energy radiated by arc and blocked by workpiece surface. Concerning mechanical simulation, an elasto-plastic behavior with isotropic hardening is implemented. A weak coupling is established between equations governing heat transfer and mechanics thanks to the temperature dependent coefficient of linear expansion. This numerical simulation made with some simplifying assumptions predicts an angular distortion and a longitudinal shrinkage of the welded structure. The numerical results are consistent with the displacements measured by digital image correlation method.


2016 ◽  
Vol 43 (6) ◽  
pp. 0602010
Author(s):  
毛志涛 Mao Zhitao ◽  
蒲晓薇 Pu Xiaowei ◽  
汪维登 Wang Weideng ◽  
叶延洪 Ye Yanhong ◽  
邓德安 Deng Dean

Author(s):  
Emre Korkmaz ◽  
Cemal Meran

In this study, the effect of gas metal arc welding on the mechanical and microstructure properties of hot-rolled XPF800 steel newly produced by TATA Steel has been investigated. This steel finds its role in the automotive industry as chassis and seating applications. The microstructure transformation during gas metal arc welding has been analyzed using scanning electron microscope, optical microscope, and energy dispersive X-ray spectrometry. Tensile, Charpy impact, and microhardness tests have been implemented to determine the mechanical properties of welded samples. Acceptable welded joints have been obtained using heat input in the range of 0.28–0.46 kJ/mm. It has been found that the base metal hardness of the welded sample is 320 HV0.1. On account of the heat-affected zone softening, the intercritical heat-affected zone hardness values have diminished ∼20% compared to base metal.


Author(s):  
Jaber Jamal ◽  
Basil Darras ◽  
Hossam Kishawy

The concept of “sustainability” has recently risen to take the old concept of going “green” further. This article presents general methodologies for sustainability assessments. These were then adapted to measure and assess the sustainability of welding processes through building a complete framework, to determine the best welding process for a particular application. To apply this methodology, data about the welding processes would be collected and segregated into four categories: environmental impact, economic impact, social impact, and physical performance. The performance of each category would then be aggregated into a single sustainability score. To demonstrate the capability of this methodology, case studies of three different welding processes were performed. Friction stir welding obtained the highest overall sustainability score compared to gas tungsten arc welding and gas metal arc welding.


2011 ◽  
Vol 57 (Special Issue) ◽  
pp. S50-S56 ◽  
Author(s):  
P. Čičo ◽  
D. Kalincová ◽  
M. Kotus

This paper is focused on the analysis of the welding technology influence on the microstructure production and quality of the welded joint. Steel of class STN 41 1375 was selected for the experiment, the samples were welded by arc welding including two methods: a manual one by coated electrode and gas metal arc welding method. Macro and microstructural analyses of the experimental welded joints confirmed that the welding parameters affected the welded joint structure in terms of the grain size and character of the structural phase.


2012 ◽  
Vol 67 (1-4) ◽  
pp. 655-674 ◽  
Author(s):  
P. Kah ◽  
R. Suoranta ◽  
J. Martikainen

1998 ◽  
Vol 120 (3) ◽  
pp. 600-608 ◽  
Author(s):  
S. B. Zhang ◽  
Y. M. Zhang ◽  
R. Kovacevic

A novel seam tracking technology based on high frequency ultrasound is developed in order to achieve high accuracy in weld seam identification. The transmission efficiency of the ultrasound is critical for obtaining a sufficient echo amplitude. Since the transmission efficiency is determined by the difference in impedance between the piezoelectric ceramic and air, match layers are designed to optimize the transmission efficiency by matching impedance. Since the air impedance depends on the density and velocity of the ultrasound, which both depend on the temperature, the optimization has been done for a wide bandwidth. Also, the receiving circuit is designed so that its resonance frequency matches the frequency of the ultrasound. As a result, the sensitivity of the noncontact ultrasonic sensor is improved 80-fold. By properly designing the focal length of the transducer, a high resolution ultrasound beam, 0.5 mm in diameter, is achieved. Based on the proposed sensing technology, a noncontact seam tracking system has been developed. Applications of the developed system in gas tungsten arc welding (GTAW) and CO2 gas metal arc welding (GMAW) processes show that a tracking accuracy of 0.5 mm is guaranteed despite the arc light, spatter, high temperature, joint configuration, small gap, etc.


Sign in / Sign up

Export Citation Format

Share Document