The Cyclic Extrusion Behavior of Severe Plastic Deformation (CEC) of Aluminum Alloy 6061

2020 ◽  
Vol 835 ◽  
pp. 186-192
Author(s):  
Gehan A. Abd El Raouf ◽  
N. El Mahallawy ◽  
M.K. Shoukry

Cyclic extrusion compression (CEC) is one of the well-known techniques in metal forming processes under the severe plastic deformation process (SPD) in which an ultra-large plastic strain is imposed on a bulk material in order to make ultra-fine grained (UFG) metals, alloys and composites. In this work, the mechanical properties of the aluminum alloy (6061) before and after CEC process were examined. A special CEC die was design and fabricated for the present work which achieved an effective plastic strain of about 0.62 after each separate cycle of CEC. The microstructure was effectively refined with increasing the number of CEC cycles as the grain size was reduced from ≈250μm to ≈30 μm after 6 cycles of CEC. The mechanical properties were tremendously increased in comparison with those of as cast and annealed condition. The micro-hardness increased from 25 Hv to 56 Hv, while the yield and the ultimate tensile strengths increased from 60 MPa to 198 MPa and 85 MPa to 204 MPa respectively, the ductility increased from 2.97% to 4.6% with the number of CEC cycles increasing up to six cycles.

2014 ◽  
Vol 1024 ◽  
pp. 219-222
Author(s):  
Soon Vern Yee ◽  
Zuhailawati Hussain ◽  
Anasyida Abu Seman ◽  
Muhammad Syukron ◽  
Indra Putra Almanar

Equal Channel Angular Pressing (ECAP) is one of Severe Plastic Deformation (SPD) methods used to produce ultra-fine grains. In this study, aluminum alloy 6061 in a rod shape as a result from casting process was used in the experiment. The rod samples were then subjected to ECAP, up to 3 passes, through Bc route. The die channel angle of the ECAP is 1200. The changes in the microstructure and mechanical properties of the samples deformed by 1-pass, 2-pass, and 3-pass of ECAP were investigated. The results show that as number of ECAP passes increase, the applied strain accumulated in the samples also increases and the grains change from equiaxed to elongated structure. The hardness is proportional to the number of ECAP passes, and the highest value is 107 HV for 3 passes with strain value of 2.0.


2021 ◽  
Author(s):  
Noor Dawood Salman ◽  
Zeyad Doshan Kadhim ◽  
Mohammed Abdulraoof Abdulrazzaq

2016 ◽  
Vol 716 ◽  
pp. 692-699 ◽  
Author(s):  
Alexander Pesin ◽  
Denis Pustovoytov

Aluminum and its alloys are widely used as structural materials in aerospace, automotive and other industries due to low density and high specific strength. Efficient way to increase strength and other properties of aluminum alloys is to form an ultra fine grain structure using severe plastic deformation methods. Cryogenic asymmetric sheet rolling under liquid nitrogen temperature is a process of severe plastic deformation that can be used to improve the aluminum alloys structure and properties. Prediction of sheet temperature during plastic deformation is very important. The temperature of sheet is changed due to the conversion of mechanical work of deformation into heat through sliding on contact surfaces. This paper presents the results of the finite element simulation of heat transfer during cryogenic asymmetric sheet rolling of aluminum alloy 6061. The effect of thickness reduction, rolling velocity and friction coefficient on the deformation heating and temperature field of aluminum alloy 6061 was found. The results of investigation could be useful for the development of the optimal treatment process of aluminum alloys by cryogenic severe plastic deformation to obtain the ultra fine grain structure and high strength properties.


2013 ◽  
Vol 745-746 ◽  
pp. 298-302
Author(s):  
Ying Liu ◽  
Ruo Lin Cheng ◽  
Jing Tao Wang ◽  
He Zhang ◽  
Xin Ming Zhang

The effect of severe plastic deformation at ambient temperature on microstructures and mechanical properties of aluminum alloy 2519 was investigated by means of tensile test, micro-hardness test, optical microscopy and scanning electron microscopy. The results showed that tensile strength of as-queched 2519 alloy was greatly enhanced to nearly 550MPa (ultimate tensile strength, UTS) and 520MPa (yield strength, YS) by severe cold rolling or equal channel angular processing (ECAP) while the elongation decreased to 5%. The 2519 alloy could obtain quite well mechanical properties as much as 80 % and 12 passes cold rolling deformation. This indicated that pre-deformation by ECAP is effective in improving the mechanical properties of 2519 alloy by grain refinement, strain aging and high density dislocations.


Sign in / Sign up

Export Citation Format

Share Document