Evaluation Compressive Strength of Cement-Limestone-Slag Ternary Blended Concrete Using Artificial Neural Networks (ANN) and Gene Expression Programming (GEP)

2020 ◽  
Vol 837 ◽  
pp. 119-124
Author(s):  
Xiao Yong Wang

Limestone and slag blended concrete is an innovative concrete which belongs to the family of limestone calcined clay cement (LC3) concrete. Strength is an important property of structural concrete. This study shows artificial neural networks (ANN) and gene expression programming (GEP) models for predicting strength development of limestone and slag blended concrete. ANN model consists of an input layer, a hidden layer, and output layer. GEP model consists of the sum of three expression trees. The input parameters of ANN and GEP models are mixtures and ages. The output parameter is a strength. The correlation coefficients of ANN and GEP model are 0.99 and 0.98, respectively. Both ANN and GEP model can produce prediction results of the strength of ternary blended concrete reliably.

2019 ◽  
Vol 8 (4) ◽  
pp. 3902-3910

In the field of mobile robotics, path planning is one of the most widely-sought areas of interest due to its nature of complexity, where such issue is also practically evident in the case of mobile robots used for waste disposal purposes. To overcome issues on path planning, researchers have studied various classical and heuristic methods, however, the extent of optimization applicability and accuracy still remain an opportunity for further improvements. This paper presents the exploration of Artificial Neural Networks (ANN) in characterizing the path planning capability of a mobile waste-robot in order to improve navigational accuracy and path tracking time. The author utilized proximity and sound sensors as input vectors, dual H-bridge Direct Current (DC) motors as target vectors, and trained the ANN model using Levenberg-Marquardt (LM) and Scaled Conjugate (SCG) algorithms. Results revealed that LM was significantly more accurate than SCG algorithm in local path planning with Mean Square Error (MSE) values of 1.75966, 2.67946, and 2.04963, and Regression (R) values of 0.995671, 0.991247, and 0.983187 in training, testing, and validation environments, respectively. Furthermore, based on simulation results, LM was also found to be more accurate and faster than SCG with Pearson R correlation coefficients of rx=.975, nx=6, px=0.001 and ry=.987, ny=6, py=0.000 and path tracking time of 8.47s.


Author(s):  
J. V. Ratnam ◽  
Masami Nonaka ◽  
Swadhin K. Behera

AbstractThe machine learning technique, namely Artificial Neural Networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January and February for the period 1949/50 to 2019/20. The predictions are made for the four regions Hokkaido, North, Central and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN predicted SAT anomalies are compared with that of ensemble mean of 8 of the North American Multi-Model Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83 to 2018/19. The ANN predicted SAT anomalies also have higher Hit rate and lower False alarm rate compared to the NMME predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.


2021 ◽  
Vol 73 (08) ◽  
pp. 819-832

This study is aimed at improving a formula that enables easy, correct, and fast estimation of an Early-Stage Cost of Buildings (ESCE). This formula, enabling estimation of ESCE, was developed by the authors based on artificial neural networks and gene expression programming. A quantity survey was conducted for a hundred construction projects, and a data set was created. This data set was analysed with many Artificial Neural Networks to determine the variables that affect ESCE. An algorithm configuration was made with Gene Expression Programming, and the ESCE formula was created using this algorithm configuration. This formula estimates ESCE with satisfactory precision. The use of the proposed formula in the early-stage building cost calculations is important not only for faster and easier cost calculation but also to prevent any differences that may arise due to the individual making the calculations.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1070
Author(s):  
Abdul Gani Abdul Jameel

The self-learning capabilities of artificial neural networks (ANNs) from large datasets have led to their deployment in the prediction of various physical and chemical phenomena. In the present work, an ANN model was developed to predict the yield sooting index (YSI) of oxygenated fuels using the functional group approach. A total of 265 pure compounds comprising six chemical classes, namely paraffins (n and iso), olefins, naphthenes, aromatics, alcohols, and ethers, were dis-assembled into eight constituent functional groups, namely paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic –CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups, alcoholic OH groups, and ether O groups. These functional groups, in addition to molecular weight and branching index, were used as inputs to develop the ANN model. A neural network with two hidden layers was used to train the model using the Levenberg–Marquardt (ML) training algorithm. The developed model was tested with 15% of the random unseen data points. A regression coefficient (R2) of 0.99 was obtained when the experimental values were compared with the predicted YSI values from the test set. An average error of 3.4% was obtained, which is less than the experimental uncertainty associated with most reported YSI measurements. The developed model can be used for YSI prediction of hydrocarbon fuels containing alcohol and ether-based oxygenates as additives with a high degree of accuracy.


Sign in / Sign up

Export Citation Format

Share Document