Experimental Investigation on the Failure Mechanism of Grooved Steel Plate Impacted by Projectile with Different Nose Shapes

2020 ◽  
Vol 846 ◽  
pp. 162-166
Author(s):  
Nan Zhou ◽  
Jin Xiang Wang ◽  
Zong Bao Tong ◽  
Song Ze Tang

In order to study the penetration performance of the tandem warhead composed of a front circular shaped charge and a rear penetration projectile, a grooved steel plate was processed to simulate the effect of circular shaped jets on metal plate, then the failure mechanism of the grooved steel plate impacted by rear projectile was investigated by ballistic experiment, meanwhile, the effect of projectile nose shape on the failure mechanism was also analyzed. The results show that the main failure mechanism of grooved steel plate is ductile tensile deformation or damage when the projectile impacted on the inner plate body and the depth of the pre-splitting groove is not big enough (usually more than 4mm), on the other hand, the circumferential sheared fracture of the bottom of the groove occurred when the depth of the pre-splitting groove is not less than 4mm. The oval projectile body has much greater erosion damage than rod-shaped projectile during the penetration process.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Wang Jian ◽  
Martin Petkovšek ◽  
Liu Houlin ◽  
Brane Širok ◽  
Matevž Dular

We are comparing results of numerical simulations against high-speed simultaneous observations of cavitation and cavitation erosion. We performed fully compressible, cavitating flow simulations to resolve the formation of the shock waves at cloud collapse—these are believed to be directly related to the formation of the damage. Good agreements were noticed between calculations and tests. Two high pressure peaks were found during one cavitation cycle. One relates to the cavitation collapse and the other one corresponds to the cavitation shed off, both contributing to a distinctive stepwise erosion damage growth pattern. Additional, more precise, simulations with much shorter time step were performed to investigate the processes of cavitation collapse and shedding off in more detail. There the importance of small cavitation structures which collapse independently of the main cloud was found. The present work shows a great potential for future development of techniques for accurate predictions of cavitation erosion by numerical means only.


Author(s):  
Mohammed Maadheedi ◽  

This paper explores the capacity effects of a square steel plate welded at the ground surface on a driven open-ended steel pile (i.e. the plate would touch the ground surface after the pile achieves the required penetration). A series of strain-controlled, 1-g small-scale laboratory tests were undertaken on piles with and without a square steel plate attached. The piles were driven in dry, loosely packed, uniform sand. Two plates were used, one with a breadth equal to two times the diameter of the pile (2D) and the other with a breadth equal to three times the diameter of the piles (3D). A 20% increase in capacity was recorded for the 2D plate, and a 110% increase in capacity was recorded for the 3D plate when compared to the pile without an attached steel plate. The back-analysis of the results allowed the derivation of a new expression to calculate the capacity of bearing plates and plot its load-settlement profile, which accounted for the effects of sands compaction and dilation. By extrapolating the findings of these tests to a hypothetical scenario, a model design problem was described where the length of a pile can be reduced by 20% to 60% (depending on the load) by using a plate attached to the pile. The results of this study can help designers to minimise penetration depth; thus, achieving a more economical and sustainable design.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 296-302 ◽  
Author(s):  
Dini Morteza ◽  
Nikooy Mehrdad ◽  
Naskovets Michael Trofimovich ◽  
Ghomi Alireza

In this research, the results of an experimental survey on the measurement of vertical stresses are presented. Four treatments were used in this study such as combination of geotextile vertical and horizontal structure with dimensions of 5 × 5 and 10 × 10 cm, horizontal geotextile and the treatment without geotextile. Five sensors were installed in different hole locations and the lead of the truck traffic was transmitted by cables to data logging and recording devices to measure the pressure from vehicle traffic on the simulated pavement layer. Mean comparison of the treatments showed that the geotextile with vertical and horizontal structure and dimensions of 5 × 5 cm exerted the lowest pressure on the lower layers compared with the other treatments and there was a significant difference between the value of this treatment and the other treatments and that this treatment could significantly reduce the pressure of truck traffic on the forest road.


1982 ◽  
Vol 60 (5) ◽  
pp. 679-686 ◽  
Author(s):  
R. Fletcher

This paper provides a brief survey of the experimental and theoretical situation regarding the galvano- and thermomagnetic properties of potassium viewed within the context of the behaviour of other metals. Most of the data are consistent with various sample imperfections as being the major source of the anomalies that are found. However, the precise nature of the imperfections and the mechanism by which the imperfections produce the anomalies are not yet known. It is argued that the recently discovered detailed structure in the high field induced torque of K should be subjected to intensive experimental investigation before drawing any conclusions with regards to the possible presence of a charge density wave; the other magnetotransport properties offer little evidence either for or against such a possibility.


Sign in / Sign up

Export Citation Format

Share Document