Effects of Preheating and Dual Shielding on Flux-Cored Arc Welded High-Strength Carbon Steel for Hardfacing Application

2020 ◽  
Vol 856 ◽  
pp. 112-118
Author(s):  
Chaiyanan Taengwa ◽  
Attaphon Kaewvilai

This work presented the hardfacing process of high-strength structural steel based on JIS G3106 standard grade SM490YA by semi-automatic flux-cored arc welding with a dual shielding process of flux-cored self-shielded and protective gas-shielded (FCAW-G). In the welding process, the surface of SM490YA specimen was hardfacing welded by metal cored wire based on chromium carbide which was in standard of 8555: E10-MF-65-G. The hardfacing welds from FCAW-G and traditional self-shielding FCAW (FCAW-S) with and without preheat were inspected by visual and penetrant tests for evaluating the welding quality. The macrostructure of the deposited layer was investigated by optical microscope and image analysis for analyzing the weld penetration and weld dilution. In addition, the hardness of the hardfacing welded specimens was tested for the evaluation of the surface durability of the welded SM490YA.

Author(s):  
Hiroyuki Nagayama ◽  
Masahiko Hamada ◽  
Mark F. Mruczek ◽  
Mark Vickers ◽  
Nobuyuki Hisamune ◽  
...  

Ultra-high strength seamless pipes of X90 and X100 grades have been developed for deepwater or ultra-deepwater applications. Girth welding procedure specifications (WPSs) should be developed for the ultra-high strength pipes. However, there is little information for double jointing welding procedure by using submerged arc welding process for high strength line pipes. This paper describes mechanical test results of submerged arc welding (SAW) and gas shielded flux cored arc welding (GSFCAW) trials with various welding consumables procured from commercial markets. Welds were then made with typical welding parameters for riser productions using high strength X90 seamless pipes. The submerged arc weld metal strength could increase by increasing alloy elements in weld metal. The weld metal with CE (IIW) value of 0.74 mass% achieved fully overmatching for the X90 pipe. The weld metal yield strength (0.2% offset) was 694 MPa, and the ultimate tensile strength was 833 MPa. It was also confirmed that the reduction of boron in weld metal can improve low temperature toughness of high strength weld metal. Furthermore, it was confirmed that the HAZ has excellent mechanical properties and toughness for riser applications. In this study GSFCAW procedures were also developed. GSFCAW can be used for joining pipe and connector material for riser production welding. The weld metal with a CE (IIW) value of 0.54 mass% could meet the required strength level for X90-grade pipe as specified in ISO 3183. Cross weld tensile testing showed that fractures were achieved in the base metal. Good Charpy impact properties in weld metal and HAZ were also confirmed.


2017 ◽  
Vol 728 ◽  
pp. 31-35 ◽  
Author(s):  
Siva Sitthipong ◽  
Prawit Towatana ◽  
Amnuay Sitticharoenchai

This research aimed to investigate the microstructure and hardness properties of hardfacing surface on SCM440 alloy steel by using metal active gas and flux cored arc welding processes. Due to the difficulty of welding the high strength steel, the changes in base metals’ microstructures were found after welding. Preheating the specimens at 350°C and post weld heat treatment the specimens at 550°C were performed for 1 hour, to reduce the residual stresses and avoid the undesired formation of microstructures. The weld metals’ microstructures that were found from both welding processes are acicular ferrite, polygonal ferrite and side plate ferrite. The hardness value of weld metal resulted from flux cored arc welding process is higher than that of the metal active gas welding process. Each welding process produced different quantities of weld metals’ microstructures, causing the difference in hardness values. The data will be used for investigating and improving parameters of shaft repairing, in order to use it more effectively.


2017 ◽  
Vol 751 ◽  
pp. 73-78
Author(s):  
Teerachod Treeparee ◽  
Prapas Muangjunburee

Hardfacing weld is a technique which mainly improves and extends the useful life of engineering components. The purpose of this research is to improve welding procedure for one layer and three layers hardfacing of 3.5% Chromium cast steel and to study wear behavior of hardfacing layers. Flux Cored Wire Arc Welding (FCAW) process has been used as a welding process of this research by choosing austenitic stainless steel and martensitic hardfacing wire to weld the buffer and hardfacing layer respectively. Preheating was also used in this study. Abrasive wear test of hardfacing deposit were conducted in accordance with procedure “A” standard of ASTM G65. In addition, microstructures and macrostructure of worn surface deposits were analyzed by using optical microscope. These results showed that there is no crack and defect in the Heat Affected Zone (HAZ) and other regions. The hardness of preheating sample in HAZ regions was lower than the ones without preheating. Therefore, preheating samples should be done before welding. The abrasive wear resistance of three layers hardfacing deposit was better than one layer hardfacing deposit because one layer hardfacing deposit was more diluted from buffer layer than three layers hardfacing deposit. Moreover, weight loss of one hardfacing layer was also higher than three layers.


2021 ◽  
Vol 2118 (1) ◽  
pp. 012010
Author(s):  
E C Amaral ◽  
J L Jácome-Carrascal ◽  
A M Moreno-Uribe ◽  
A Q Bracarense

Abstract For this paper, the microstructure and hardness of the weld metal were investigated by conducting experiments with the flux cored arc welding process in underwater and air conditions. A rutile/oxidizing tubular wire was used, manufactured by the Robotics, Welding and Simulation Laboratory at Minas Gerais Federal University, especially for underwater wet welding. Underwater welds had a lower volumetric fraction of acicular ferrite in the weld metal compared to air welds. In the thermally affected zone, for both welds, there was a predominant formation of martensite. However, the grain size and width of the thermally affected zone of underwater welds are smaller. The hardness values shown correspond to the microstructure formed in the weld metal. On the other hand, in the region of the thermally affected zone, the hardness values were higher underwater welds, due to the smaller martensite grains presented.


2014 ◽  
Vol 216 ◽  
pp. 151-156 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Vodǎ ◽  
Gheorghe Drăgănescu

The aim of this work was to determine by vibration tests the longitudinal elastic modulus and shear modulus of welded joints by flux cored arc welding. These two material properties are characteristic elastic constants of tensile stress respectively torsion stress and can be determined by several non-destructive methods. One of the latest non-destructive experimental techniques in this field is based on the analysis of the vibratory signal response from the welded sample. An algorithm based on Pronys series method is used for processing the acquired signal due to sample response of free vibrations. By the means of Finite Element Method (FEM), the natural frequencies and modes shapes of the same specimen of carbon steel were determined. These results help to interpret experimental measurements and the vibration modes identification, and Youngs modulus and shear modulus determination.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


2021 ◽  
Vol 72 ◽  
pp. 168-178
Author(s):  
Guodong Peng ◽  
Baohua Chang ◽  
Guoqing Wang ◽  
Yanjun Gao ◽  
Runshi Hou ◽  
...  

Author(s):  
Wei Huang ◽  
Radovan Kovacevic

During the laser welding process of high-strength steels, different defects, such as a partial weld penetration, spatters, and blow-through holes could be present. In order to detect the presence of defects and achieve a quality control, acoustic monitoring based on microphones is applied to the welding process. As an effective sensor to monitor the laser welding process, however, the microphone is greatly limited by intensive noise existing in the complex industrial environment. In this paper, in order to acquire a clean acoustic signal from the laser welding process, two noise reduction methods are proposed: one is the spectral subtraction method based on one microphone and the other one is the beamforming based on a microphone array. By applying these two noise reduction methods, the quality of the acoustic signal is enhanced, and the acoustic signatures are extracted both in the time domain and frequency domain. The analysis results show that the extracted acoustic signatures can well indicate the different weld penetration states and they can also be used to study the internal mechanisms of the laser-material interaction.


Sign in / Sign up

Export Citation Format

Share Document