Evaluation of Potential of Uncoated Mesoporous Silica Particles for Drug Delivery Applications

2021 ◽  
Vol 875 ◽  
pp. 366-372
Author(s):  
Tayyab Ali Khan ◽  
Syed Mujtaba Ul Hassan ◽  
Hassan Waqas ◽  
Jamil Ahmad ◽  
Ahmat Khurshid ◽  
...  

The drug loading capability and inherent cytotoxicity of mesoporous silica particles are two prime considerations for targeted drug delivery applications. In current study, uncoated mesoporous silica (UMS) carrier particles were synthesized by sol-gel emulsion approach. The morphology and structure of UMS was thoroughly characterized using atomic force microscope (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET). The scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements reveal that mono dispersed silica particles have an average size of 250 nm with narrow size distribution. The pore size was measured as 47nm. Concentration dependent biocompatibility of UMS was evaluated using MTT assay with Hep-2c cancer cell line and cell viability of ~65% at concentrations of 7.5 nM was observed. Finally, the drug loading capability of UMS carrier was studied using ibuprofen as a model drug.

2019 ◽  
Vol 84 (9) ◽  
pp. 1027-1039 ◽  
Author(s):  
László Almásy ◽  
Ana-Maria Putz ◽  
Qiang Tian ◽  
Gennady Kopitsa ◽  
Tamara Khamova ◽  
...  

The mesoporous silica particles were prepared by the sol?gel method in one-step synthesis, in acidic conditions, from tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES), varying the mole ratio of the silica precursors. Nitric acid was used as catalyst at room temperature and hexadecyltrimethyl ammonium bromide (CTAB) as structure directing agent. Optical properties, porosity and microstructure of the materials in function of the MTES/TEOS ratio were evaluated using infrared spectroscopy, nitrogen adsorption and small angle X-ray scattering. All materials showed the ordered pore structure and the high specific surfaces, making them suitable as the drug delivery systems. Drug loading and release tests using ketoprofen were performed to assess their performance for drug delivery applications. The amount of the methylated precursor used in the synthesis had little effect on the drug loading capacity, but had a strong influence on the initial rate of the drug release.


Author(s):  
Marzieh Heidari Nia ◽  
Roya Koshani ◽  
Jose G. Munguia-Lopez ◽  
Ali Reza Kiasat ◽  
Joseph M. Kinsella ◽  
...  

2021 ◽  
Author(s):  
Shishuai Dang ◽  
Zhengwei Huang ◽  
Ying Huang ◽  
Xin Pan ◽  
Chuanbin Wu

<p>Lipid-based nanoparticles (LBNs) are a new type of nanoparticulate drug delivery system, which have been gradually shown broad prospects in pulmonary drug delivery systems. However, the main disadvantage of these LBNs for inhalable drugs with limited lipophilicity is the low encapsulation capacity. Herein, this study anticipates establishing a technology platform to improve the loading capacity of low lipophilicity drugs in LBNs, for the therapy of lung diseases. A proof-of-concept was carried out using Beclomethasone dipropionate (BDP) as a model drug. BDP was conjugated with stearic acid (SA), a kind of the lipid matrix for LBN. The conjugate was characterized and the interactions between the conjugate and SA were investigated by molecular dynamics simulation. It is expected that the drug loading capacity of weak-lipophilic drugs in LBN can be increased by establishing the technology platform, and the application of LBNs in pulmonary delivery can be broadened.</p>


2014 ◽  
Vol 96 ◽  
pp. 54-60 ◽  
Author(s):  
Anahí Philippart ◽  
Elena Boccardi ◽  
Lucia Pontiroli ◽  
Ana Maria Beltrán ◽  
Alexandra Inayat ◽  
...  

Novel silica-based bioactive glasses were successfully prepared by the sol-gel method. The optimized glass composition for fabrication of the scaffolds was (in mol.%) 60% SiO2 – 30% CaO - 5% Na2O - 5% P2O5 (60S30C5N5P). This composition was confirmed to develop a thick hydroxycarbonate apatite (HCA) layer in Simulated Body Fluid (SBF) after 7 days, as revealed by Fourier Transform Infrared Spectroscopy (FTIR), indicating the bioactive character of the scaffolds. The mesoporous nature of the glass structure allows the load of tetracycline and a sustained release of the drug in PBS during 7 days was measured.


2011 ◽  
Vol 100 (8) ◽  
pp. 3294-3306 ◽  
Author(s):  
Tarja Limnell ◽  
Hélder A. Santos ◽  
Ermei Mäkilä ◽  
Teemu Heikkilä ◽  
Jarno Salonen ◽  
...  

MedChemComm ◽  
2017 ◽  
Vol 8 (9) ◽  
pp. 1797-1805 ◽  
Author(s):  
Madhappan Santha Moorthy ◽  
Subramanian Bharathiraja ◽  
Panchanathan Manivasagan ◽  
Kang Dae Lee ◽  
Junghwan Oh

Herein, we propose a “host–guest” complexation-based mesoporous silica drug carrier, MSNs@Mela@TTM, for pH-responsive drug delivery applications in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document