Optimization of Gas Metal Arc Welding (GMAW) Parameters for Minimum Distortion of T Welded Joints of A36 Mild Steel by Taguchi Method

2020 ◽  
Vol 1000 ◽  
pp. 356-363
Author(s):  
Ario Sunar Baskoro ◽  
Rafdi Hidayat ◽  
Agus Widyianto ◽  
Mohammad Azwar Amat ◽  
Danurengga Ubaszti Putra

In this study, the GMAW parameters for welding of A36 mild steel have been investigated to get the minimum of distortion. The type of welded joint used was square groove T-joint fillet weld with filler wire ER70S-6. The welding current and the welding speed were selected as input parameters while the response used was distortion (longitudinal bending distortion and angular distortion). Taguchi method was used to determine optimal welding parameters which the minimum distortion. Design of experiment was set two factors with three level in each factor and three replication, so the L9 Taguchi’s orthogonal array was applied. The minimum conditions were determined using S/N ratio with a quality character of smaller is better (SB). In addition, to determine the significance of the welding parameters used ANOVA. The results show that the welding current of 170 A and the welding speed of 4.0 mm/s were obtained as the minimum of longitudinal bending distortion and angular distortion. Based on analysis of variance, the welding current was a parameter that greatly affects the longitudinal bending distortion with the percentage contribution of 64.36% while angular distortion was strongly influenced by welding speed parameter with the percentage contribution of 53.38%.

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744046 ◽  
Author(s):  
Juan Pu ◽  
Shengfu Yu ◽  
Yuanyuan Li

Flux-aided backing-submerged arc welding has been conducted on D36 steel with thickness of 20 mm. The effects of processing parameters such as welding current, voltage, welding speed and groove angle on welding quality were investigated by Taguchi method. The optimal welding parameters were predicted and the individual importance of each parameter on welding quality was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The importance order of the welding parameters for the welding quality of weld bead was: welding current [Formula: see text] welding speed [Formula: see text] groove angle [Formula: see text] welding voltage. The welding quality of weld bead increased gradually with increasing welding current and welding speed and decreasing groove angle. The optimum values of the welding current, welding speed, groove angle and welding voltage were found to be 1050 A, 27 cm/min, 40[Formula: see text] and 34 V, respectively.


Author(s):  
Jephthah A. Ikimi ◽  
Aigbovbiosa A. Momodu ◽  
Erhuvwu Totore

In welding, the quality of welded joints is greatly influenced by the welding process parameters. Thus, in order to achieve a good weld quality, there is exigency to select the right welding process parameters. The focus of this study is to investigate the effect of Metal Inert Gas (MIG) welding process parameters; welding current, welding voltage and welding speed on the tensile strength of mild steel AA10119 welded plates. The experiment was designed using Taguchi’s L9 orthogonal array with three levels. Kaierda MIG MAG Inverter CO2 Welder Model E-180 welding machine was used to conduct the experiments with three repetitions. From the analysis carried out by applying Taguchi’s method, the result shows that the welding speed and welding current have the most significant influence on tensile strength of the weld and an optimum parameter setting of A3B2C2 was suggested; welding current 240 A, welding voltage 25 V and welding speed 0.010 m/s. The mean tensile strength at this optimal setting A3B2C2 was predicted to be 442 N/mm2.


2019 ◽  
Vol 294 ◽  
pp. 119-123
Author(s):  
Zong Liang Liang ◽  
Tae Jong Yun ◽  
Won Bin Oh ◽  
Bo Ram Lee ◽  
Ill Soo Kim

Generally, the welding parameters directly affect the weld forming and the joint performance. Because many parameters are involved in the automatic arc welding process, it is not realistic to use traditional experimental methods, such as full factorial design. Therefore, it is important to find out the good experimental design method to determine the welding parameters for optimal joint quality with a minimal number of experiments. Therefore, this study is aimed at investigating the effect of DOE (Design of Experiment) methods on bead width of mild steel parts welded by the automatic GMA (Gas Metal Arc) welding process. In this work, Taguchi method was used for studying the effect of the welding parameters on optimization of bead width, while Box-Behnken method was utilized to develop a mathematical model relating the bead width to welding parameters such as welding voltage, arc current, welding speed and CTWD (Contact Tip to Work Distance). The S/N (Signal-to-Noise) ratio and the ANOVA (Analysis of Variance) were employed to find the optimal bead width. Confirmation tests were carried out to validate the effectiveness of the Taguchi method. The experimental results show that welding current mainly affected the bead width. The predicted bead width of 3.12mm was in good agreement with the confirmation tests. With the regression coefficient analysis in the Box-Behnken design, a relationship between bead width and four significant welding parameters was obtained. A second-order model has also been established between the welding parameters and the bead width as welding quality. The developed model is adequate to navigate the design space.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1494
Author(s):  
Ran Li ◽  
Manshu Dong ◽  
Hongming Gao

Bead size and shape are important considerations for industry design and quality detection. It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a continually changing welding process due to the complex interrelationship between different welding parameters and the actual bead. In this paper, an artificial neural network model for predicting the bead geometry with changing welding speed was developed. The experiment was performed by a welding robot in gas metal arc welding process. The welding speed was stochastically changed during the welding process. By transient response tests, it was indicated that the changing welding speed had a spatial influence on bead geometry, which ranged from 10 mm backward to 22 mm forward with certain welding parameters. For this study, the input parameters of model were the spatial welding speed sequence, and the output parameters were bead width and reinforcement. The bead geometry was recognized by polynomial fitting of the profile coordinates, as measured by a structured laser light sensor. The results showed that the model with the structure of 33-6-2 had achieved high accuracy in both the training dataset and test dataset, which were 99% and 96%, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Tianqi Li ◽  
Yingying Zhang ◽  
Lei Gao ◽  
Yunhao Zhang

This study presents the Taguchi design method with L9 orthogonal array which was carried out to optimize the flux-cored arc welding (FCAW) process parameters such as welding current, welding voltage, welding speed, and torch angle with reference to vertical for the ferrite content of duplex stainless steel (DSS, UNS S32205) welds. The analysis of variance (ANOVA) was applied, and a mathematical model was developed to predict the effect of process parameters on the responses. The results indicate that welding current, welding voltage, welding speed, torch angle with reference to vertical, and the interaction of welding voltage and welding speed are the significant model terms connected with the ferrite content. The ferrite content increases with the increase of welding speed and torch angle with reference to vertical, but decreases with the increase of welding current and welding voltage. Through the developed mathematical model, the target of 50% ferrite content in weld metal can be obtained when all the welding parameters are set at the optimum values. Finally, in order to validate experimental results, confirmation tests were implemented at optimum working conditions. Under these conditions, there was good accordance between the predicted and the experimental results for the ferrite content.


2011 ◽  
Vol 696 ◽  
pp. 248-253
Author(s):  
P. Promdirek ◽  
Somrerk Chandra-ambhorn ◽  
R. Prasong ◽  
S. Rittirat ◽  
N. Pornpaisansakul

Due to high wear resistance and chemical stability at high temperature, cobalt base alloys have presently been used as materials for hardfacing in several applications, for example, coating a head of thermowell, a protecting part for thermocouple, in petrochemical production. One of various techniques used for hardfacing is often weld cladding by using a gas tungsten arc welding (GTAW) method. However, welding parameters should be exactly controlled in order to obtain desired materials due to their structure. The objective of this experiment is to study the influence of the GTAW parameters on the high-temperature erosion-corrosion resistance of Incoloy 800 thermowell cladded by the cobalt-base alloy filler, Stellite12 (Co-29.5Cr-8.5W-1.4C) at 900°C. The studied parameters were welding speed in the range of 0.1-0.9 mm s-1, welding current in the range of 60-75 A, and flow rate of pure Ar used as shield gas in the range 3-20 liter min-1. The results showed that when erosion rates had a tendency to increase with increasing current for all welding speed except 0.8 mm s-1. The erosion rate decreased with the increasing current for the welding speed of 0.8 mm s-1. Using flow rate of 5 liter min-1induced the lowest erosion rate. The optimum GTAW parameters giving the lowest erosion rate were the welding current of 75 A, flow rate of 5 litter min-1, and welding speed of 0.8 mm s-1. However, it was found that hardness results did not correspond to the erosion rate. It was found that high hardness led to heavy mass loss due to the fracture on the surface. From metallographic observation, the oxidation could be observed on the sample surface before the erosion testing. However, the spallation of oxide scale might be involved due to the high erosion rate. It was also observed that the solid solution phases influenced more significantly on the erosion - corrosion resistance than the carbide did.


2021 ◽  
Author(s):  
lanyu mao ◽  
Zongan Luo ◽  
Yingying Feng ◽  
Xiaoming Zhang

Abstract Vacuum roll-cladding (VRC) is an effective method to produce high quality ultra-heavy AISI P20 plate steel. In the process of VRC, reasonable welding process of electron beam welding (EBW) can significantly avoid welding cracks and reduce the cost. In this paper, the electron beam welding process of AISI P20 tool steel was simulated by using a combined heat source model based on finite element method, and the temperature field and stress field under different welding parameters were studied respectively . The results showed that welding parameters have a greater effect on weld penetration than that of weld width, which making the aspect ratio increases with the increase of welding current, and decrease with the increase of welding speed. The weld morphologies were consistent with those of the modeling and the measured thermal heat curves were good agreement with those of simulated, which was verified the feasibility and effectiveness of temperature fields. The results of stress fields under different welding parameters indicat ed that lower welding speed and higher welding current resulting in lower residual stress at welded joint, which means lower risk of cracking after EBW. The results of this study have been successfully applied to industrial production.


2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Haikal Haikal ◽  
Moch. Chamim ◽  
Deni Andriyansyah ◽  
Apri Wiyono ◽  
Ario Sunar Baskoro ◽  
...  

<p class="Abstract">In this study, research on the use of the External Magnetic Field method – Tungsten Inert Gas was done to determine the effect of welding arc compression on the quality of <em>AISI 304 </em>thin plate weld. The welding process was performed using autogenous welds. In this study, an external magnetic field was generated by placing a magnetic solenoid around the <em>TIG</em> welding torch. Enabling this electromagnetic field is done dynamically using a microcontroller. Welding parameters used are welding current <em>100; 105; 110 A</em> and welding speed <em>1.6; 1.8; 2.05 mm/s</em>. The results of this study showed that <em>EMF-TIG</em> welding can produce a more uniform bead width along the weld line with a standard deviation of 0.08 compared with conventional <em>TIG </em>welding of <em>0.12</em>. Increased welding speed of  <em>2.05 mm/s</em> causes no effect on the addition of an external magnetic field to the width of the weld bead. The current parameters are <em>105 A </em>with a speed of <em>1.6; 1.8; 2.05 mm/s</em> resulted in compression of the top bead width by <em>0.87; 0.61; 0.1 mm</em>. The welding parameters with a current of 105 A and welding speed of <em>1.6 mm/s</em> have a larger upper bead compression effect of <em>0.84 mm</em> compared to <em>110 A</em> currents of <em>0.38 mm</em>. Moreover, the <em>D/W</em> ratio obtained under an external magnetic field was higher than without magnetic.</p>


2006 ◽  
Vol 505-507 ◽  
pp. 205-210
Author(s):  
Wen T. Chien ◽  
S.W. Chang

A predictive model is presented for the prediction of shear strength in laser welding AISI304 stainless steel. Welding experiments conducted using a pulsed Nd:YAG laser machine while the laser welding parameters and their levels have been arranged according to design of experiments of Taguchi method. The tensile tests are performed after welding and the measurements of tensile strength are further calculated for shear strength. The data can be analyzed using the principles of Taguchi method for determining the optimal laser welding parameters and for investigating the most significant laser welding parameter on shear strength. Furthermore, the results are treated as the training and recalling patterns for constructing a predictive model using back-propagation neuron network to predict shear strength for the range of laser welding operation tested. It is indicated that welding speed is the most significant affecting parameters on shear strength. In addition, an increase in welding speed causes a decrease in shear strength is found. An average error 5.75%for shear strength can be found by comparing the experimental results obtained from conducting verification tests with the predicting values obtained from the established predictive model. It shows that the predictive model is capable of good predicting behavior of laser welding AISI304 stainless steel.


Sign in / Sign up

Export Citation Format

Share Document