Lumen Maintenance of Ternary Ag-Alloy Wire Bonded LED Package after Reliability Tests

2020 ◽  
Vol 1003 ◽  
pp. 275-280 ◽  
Author(s):  
Jui Hung Yuan ◽  
Tung Han Chuang ◽  
Ju Hui Chuang

In this investigation, ternary Ag-alloy wires were doped with different Pd and Au concentrations, and each wire was encapsulated in an LED package. The static and dynamic reliability were tested, and the lumen maintenance performance was examined. The static reliability tests included the sulfur test, LTSL, HTSL, and WHTSL. According to the sulfur test data, higher Pd and Au contents led to better lumen maintenance. Furthermore, the bonding wire of the LED with better lumen maintenance in the sulfur test had higher electrical resistance. The brightness decay rate of the white light LEDs was low in low-and high-temperature environments, but it was significantly higher after the WHTSL test. The dynamic reliability test after 1,000 hours of HTOL and WHTOL showed that the lumen maintenance improved with higher Pd and Au contents, indicating that doping Ag-alloy wires with sufficient amounts of Pd and Au can retard degradation due to thermal and humidity aging and oxidation reaction. Therefore, ternary Ag-Pd-Au alloy wires produced with specific drawing and annealing processes are suitable for application to mid-power white light LEDs.

2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


1907 ◽  
Vol 45 (3) ◽  
pp. 547-554
Author(s):  
C. G. Knott

The experiments which form the subject of the present communication were carried out two years ago, and supplement results already published. A brief note of some of the results was read before the Society in June 1904, and was also read before the British Association Meeting at Cambridge in August of the same year.The previous paper discussed the effect of high temperature on the relation between electrical resistance and magnetization when the wire was magnetized longitudinally, that is, in the direction in which the resistance was measured.The present results have to do with the effect of high temperature on the relation between resistance and magnetization when the magnetization was transverse to the direction along which the resistance was measured.


2000 ◽  
Vol 622 ◽  
Author(s):  
Liang-Yu Chen ◽  
Gary W. Hunter ◽  
Philip G. Neudeck

ABSTRACTSingle crystal silicon carbide (SiC) has such excellent physical, chemical, and electronic properties that SiC based semiconductor electronics can operate at temperatures in excess of 600°C well beyond the high temperature limit for Si based semiconductor devices. SiC semiconductor devices have been demonstrated to be operable at temperatures as high as 600°C, but only in a probe-station environment partially because suitable packaging technology for high temperature (500°C and beyond) devices is still in development. One of the core technologies necessary for high temperature electronic packaging is semiconductor die-attach with low and stable electrical resistance. This paper discusses a low resistance die-attach method and the results of testing carried out at both room temperature and 500°C in air. A 1 mm2 SiC Schottky diode die was attached to aluminum nitride (AlN) and 96% pure alumina ceramic substrates using precious metal based thick-film material. The attached test die using this scheme survived both electronically and mechanically performance and stability tests at 500°C in oxidizing environment of air for 550 hours. The upper limit of electrical resistance of the die-attach interface estimated by forward I-V curves of an attached diode before and during heat treatment indicated stable and low attach-resistance at both room-temperature and 500°C over the entire 550 hours test period. The future durability tests are also discussed.


2011 ◽  
Vol 415-417 ◽  
pp. 611-616
Author(s):  
Yao Wu Wang ◽  
Nai Xiang Feng ◽  
Jing You

Laboratory-scale carbon anodes were produced by a new method of high-temperature mould pressing, and their physico-chemical properties were studied in laboratory. The results showed that the bulk density of carbon anodes produced by high-temperature mould pressing are 1.61-1.63g/cm3, they are higher than industrial carbon anode by 0.06 g/cm3, but the specific electrical resistance is higher and crushing strength is lower.


2015 ◽  
Vol 204 (2) ◽  
pp. 1316-1331 ◽  
Author(s):  
Zhenlu Shao ◽  
Deming Wang ◽  
Yanming Wang ◽  
Xiaoxing Zhong ◽  
Xiaofei Tang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24577-24583 ◽  
Author(s):  
Haikun Liu ◽  
Libing Liao ◽  
Maxim S. Molokeev ◽  
Qingfeng Guo ◽  
Yuanyuan Zhang ◽  
...  

A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+ was prepared through traditional high-temperature solid state technology.


It is well known that for small magnetising forces the magnetisation of iron, nickel, and cobalt increases with increase of temperature, but that it diminishes for large magnetising forces. Bauer has also shown that iron ceases to be magnetic some­ what suddenly, and that the increase of magnetisation for small forces continues to near the point at which the magnetism disappears. His experiments were made upon a bar which was heated in a furnace and then suspended within a magnetising coil and allowed to cool, the observations being made at intervals during cooling. This method is inconvenient for the calculation of the magnetising forces, and the temperature must have been far from uniform through the bar. In my own experi­ments on an impure sample of nickel the curve of magnetisation is determined at temperatures just below the temperature at which the magnetism disappears, which we may appropriately call the critical temperature. Auerbach and Callendar have shown that the electrical resistance of iron increases notably more rapidly than does that of other pure metals. Barrett, in announcing his discovery of recalescence, remarked that the phenomenon probably occurred at the critical temperature. Tait investigated the thermo-electric pro­perties of iron, and found that a notable change occurred at a red heat, and thought it probable that this change occurred at the critical temperature.


RSC Advances ◽  
2016 ◽  
Vol 6 (86) ◽  
pp. 82824-82831 ◽  
Author(s):  
Hua Yu ◽  
Degang Deng ◽  
Youjie Hua ◽  
Chenxia Li ◽  
Shiqing Xu

An emission-tunable phosphor, Eu2+-activated LiSr(4−x−y)Cax(BO3)3:yEu2+ phosphor, was synthesized by high temperature solid state reaction.


2017 ◽  
Vol 114 (13) ◽  
pp. 3375-3380 ◽  
Author(s):  
Yu Shu ◽  
Dongli Yu ◽  
Wentao Hu ◽  
Yanbin Wang ◽  
Guoyin Shen ◽  
...  

As an archetypal semimetal with complex and anisotropic Fermi surface and unusual electric properties (e.g., high electrical resistance, large magnetoresistance, and giant Hall effect), bismuth (Bi) has played a critical role in metal physics. In general, Bi displays diamagnetism with a high volumetric susceptibility (∼10−4). Here, we report unusual ferromagnetism in bulk Bi samples recovered from a molten state at pressures of 1.4–2.5 GPa and temperatures above ∼1,250 K. The ferromagnetism is associated with a surprising structural memory effect in the molten state. On heating, low-temperature Bi liquid (L) transforms to a more randomly disordered high-temperature liquid (L′) around 1,250 K. By cooling from above 1,250 K, certain structural characteristics of liquid L′ are preserved in L. Bi clusters with characteristics of the liquid L′ motifs are further preserved through solidification into the Bi-II phase across the pressure-independent melting curve, which may be responsible for the observed ferromagnetism.


Sign in / Sign up

Export Citation Format

Share Document