Pressed Composites Based on Gypsum and Magnesia Binders Modified with Secondary Resources

2020 ◽  
Vol 1011 ◽  
pp. 52-58
Author(s):  
A. Kaklyugin ◽  
Nonna Stupen ◽  
Lubov Kastornykh ◽  
Viktor Kovalenko

The results of the studies aimed at increasing the water resistance of the pressed building materials based on gypsum and magnesia binders due to their modification with active dispersed fillers from secondary resources are presented. The gypsum binder modification was carried out by the joint introduction of carbonate-containing sludge from it into the chemical treatment of thermal power plants and monoammonium phosphate, and of magnesia cement - silica fume and finely ground burnt mines. Physical and mechanical characteristics of the materials’ control samples were determined according to the standards and generally accepted methods. The increase in water resistance of the pressed modified composites was evaluated by changing the softening coefficient. It is shown that when using gypsum binders, an increase in the water resistance of products based on them can be achieved by changing the structure formation of the pressed material and the formation on the elements’ surface of its fine-crystalline structure of the sparingly soluble calcium phosphates’ screening protective films. The increase in water resistance of pressed products made of modified magnesia binders is explained by the appearance of insoluble hydro silicates, hydro aluminates and hydro aluminosilicates of magnesium, in the structure of the hardened artificial stone as well as the formation of a complex combined structure containing coagulation, condensation and crystallization phases. The technical characteristics of the materials obtained are sufficient for their use, in particular, in the building envelope. The possibility of replacing a significant amount of binders with secondary resources has been identified. This allows not only to increase the water resistance of the pressed products on the basis of the proposed modified binders, but also to reduce their cost, as well as free up the land allocated for dumps.

1999 ◽  
Vol 09 (03n04) ◽  
pp. 417-422 ◽  
Author(s):  
V. VIJAYAN ◽  
S. N. BEHERA

Fly ash is a major component of solid material generated by the coal-fired thermal power plants. In India the total amount of fly ash produced per annum is around 100 million tonnes. Fly ash has a great potential for utilization in making industrial products such as cement, bricks as well as building materials, besides being used as a soil conditioner and a provider of micro nutrients in agriculture. However, given the large amount of fly ash that accumulate at thermal power plants, their possible reuse and dispersion and mobilization into the environment of the various elements depend on climate, soils, indigenous vegetation and agriculture practices. Fly ash use in agriculture improved various physico-chemical properties of soil, particularly the water holding capacity, porosity and available plant nutrients. However it is generally apprehended that the application of large quantity of fly ash in fields may affect the plant growth and soil texture. Hence there is a need to characterize trace elements of fly ash. The results of trace element analysis of fly ash and pond ash samples collected from major thermal power plants of India by Particle Induced X-ray Emission (PIXE) have been discussed.


2020 ◽  
Vol 1011 ◽  
pp. 109-115
Author(s):  
Inna Maltseva ◽  
Svetlana Kurilova ◽  
Alexey Naumov

One of the effective ways to solve the environmental problems of the region at present is the waste disposal from Novocherkasskaya TPP, one of the largest sources of environmental pollution. The solution to this problem is associated with the integrated use of ash and slag mixtures components in the effective building materials’ production. On the TPP waste basis, the authors obtained structural and heat-insulating concrete with enhanced physical, mechanical and operational characteristics.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 692
Author(s):  
Dmytro Storozhenko ◽  
Oleksandr Dryuchko ◽  
Teofil Jesionowski

The raw material mixture from the silicon-like technogenic component the ash-removal of thermal power plants and the preparation methods of  waterproof porous heat-insulated materials wide usage for raw mass hot foaming powdered two-stage technology are developed. The development uses the polyfunctional properties of liquid glass  as a) the binder component; c) breeder; c) the speed regulator of the clamping mass hardenin. Its optimized version begins to solidify at its usual temperature from the moment its "reproduction" is soluble glass and forms a paste-shaped cake with a set of properties necessary for the next fragmentation. The proposed formulation allows compositions processing in various ways, with the formation of granular heat-insulating fillers, materials for thermal insulation in complex structures, slab and shell-like types of thermal insulation materials. The task is set, depending on the goals and features of the tasks being solved; it is possible to conduct several different methods at the final stages of their obtaining. Two stages of the recycling process determine the character and behavior of the rare-glass composite systems constituent components during heat treatment, their strong adhesion to most structural materials and the need to solve billets easy removal problem from the molding unit. Study results can be used in the field of building materials production, in particular porous artificial products, in obtaining granular insulating material and light aggregate for concrete industrial and civil construction, in thermal engineering as thermal insulation, etc.   


Author(s):  
R S Feduik ◽  
A K Smoliakov ◽  
R A Timokhin ◽  
V O Batarshin ◽  
Yu G Yevdokimova

2013 ◽  
Vol 807-809 ◽  
pp. 1388-1396
Author(s):  
Wen Yong Wang ◽  
Bo Jun Ke ◽  
Gao Ping Fu

Based on a detailed survey on the source and volume of SO2 emission over Chengdu economic circle, the third-generation air quality model CMAQ is adopted for simulating the concentration of SO2 in the air over Chengdu Economic Circle. The results show that the hourly average concentration, daily average concentration and annual average concentration of SO2 in air exceed the limit of national standard, and the affected areas respectively account for 0.12%, 0.18% and 0.03% of the total area of the economic circle. Meanwhile, according to the result of calculation, the SO2 emissions of thermal power plants, chemical industry, building materials plants and industrial area sources make the largest contribution to the SO2 concentration in the air, with ratios of 36.15%, 18.67%, 11.81% and 8.34% respectively. thus,main measures to reduce emissions of SO2 in Chengdu economic circle are proposed as follows: focusing on the control of the emissions of SO2 from industrial enterprises, especially in the thermal power plants, chemical industry, building materials plants as well as industrial boilers; joint prevention and control measures should be implemented between the cities, so as to reduce the interaction caused dy emissions of SO2. With the application of the above measures, the total SO2 emissions can be reduced by 50% and the concentration of SO2 in the air can meet with the Class II of national ambient air quality Standard.


Technobius ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 0003
Author(s):  
Aliya Aldungarova ◽  
Kapar Aryngazin ◽  
Vladimir Larichkin ◽  
Assem Abisheva ◽  
Kamilla Alibekova

The paper describes the technology of manufacturing a construction product by vibrocompression using ash and slag waste from thermal power plants in the Pavlodar region. The task of the experimental research was to obtain a hollow wall stone based on ash and slag waste with a strength grade that is not inferior to products made according to the traditional recipe. The obtained samples with different ratios of components in the mixture were investigated for compressive strength, moisture absorption, frost resistance. It has been established that when ash and slag waste are added to the composition of the concrete mixture in an amount of up to 35 % of the mass of dry components, the strength characteristics of the hollow wall stone correspond to the selected brand


2015 ◽  
Vol 3 (1) ◽  
pp. 53-56
Author(s):  
Кирил Безгласный ◽  
Kiril Bezglasnyy ◽  
Роман Скориков ◽  
Roman Skorikov ◽  
Артем Шаля ◽  
...  

This article shows the obstacles of using thermal power plant’s ash waste on an industrial scale. The results of determining the activity of fly ash and hydroremoval ash in a mixture with Portland cement are given. Schemes of translation ash from the category of waste with heterogeneous characteristics in the raw material with stable properties are offered. The most rational ways of using ash from thermal power plants in building materials are presented


2019 ◽  
Vol 802 ◽  
pp. 57-68 ◽  
Author(s):  
Alexandra Viktorovna Semenyutina ◽  
Viktoria Alekseevna Semenyutina ◽  
Aliya Shamilyevna Khuzhakhmetova ◽  
Igor Petrovich Svintsov

During the operation of thermal power plants, boilers, incinerators, vehicles, industrial enterprises for the production of synthetic fatty acids, building materials, paints, textiles, cardboard, paper, as well as resins and products based on them – plywood, chipboards, wood-fiber boards, plastics, etc. The environment is contaminated with formaldehyde. Formaldehyde acts climatically and toxically on local, regional and global processes in the environment and contributes to a high level of air pollution (air pollution index > 14) in almost all industrialized regions of Russia. Products containing formaldehyde, getting into residential and non-residential premises, create an environmental risk to public health. The article is devoted to determining the effect of formaldehyde on woody plants by biochemical and electrophysiological methods and developing a method of reducing the concentration of formaldehyde in the environment by introducing into industrial materials aluminosilicate sorbents of different crystal chemical structure, processed thermo-, in a pulsed magnetic field and under the combined effect of a pulsed magnetic field and temperature effects.


2018 ◽  
Vol 61 (6) ◽  
pp. 439-446 ◽  
Author(s):  
G. S. Podgorodetskii ◽  
V. B. Gorbunov ◽  
E. A. Agapov ◽  
T. V. Erokhov ◽  
O. N. Kozlova

 The further development of the Russian coal industry, especially in the regions of Siberia and the Far East, in line with the  Energy Strategy, predetermines the need to address the problem of  utilization of ash and slag wastes in newly implemented projects.  The total amount of ash and slag in the ash dumps in Russia is more  than 1.5  billion tons, and the area occupied by fly ash and slag wastes  (FASW) is more than 220 km2. At the same time, the degree of FASW  use does not exceed 10  %. It is shown that the main solutions for the  recycling of the industrial solid waste generated by thermal power  plants are their use in the production of building materials, road construction, or the complex processing of FASW with the extraction  of metals and the production of building mate rials either. Some fly  ash can be used in agriculture. The physicochemical properties of  fly ash and slag wastes and, accordingly, the directions of their use,  as well as the choice of technology, are determined by the mineral  part of the fossil coals and the way they are burned. To use fly ash in  the construction industry, it is necessary to transfer the ash removal  system to the dry method, accompanied, on the one hand, by a large  volume of capital investments in equipment and facilities for storage,  classification, crushing and grinding, the transfer of new physical and  chemical properties to fly ash and slag waste, and on the other side,  an increase in organizational and transport barriers. Examples of proposed technologies for utilization of ash and slag wastes in the form of metal recovery and production of building materials are given. To  obtain iron-containing concentrates, one-stage magnetic separation  is used, but the quality of the concentrate does not meet modern requirements. The most technologically effective for the extraction of  metals from ash and slag wastes are technologies based on flotation  methods. At the same time, it follows from the provided data that  their application can be limited to economic, organizational factors  and the emergence of new environmental risks. The conclusion is  made on the possibility of using the above technologies for existing  coal-fired power plants only with state support.


Sign in / Sign up

Export Citation Format

Share Document