scholarly journals Processing of Nanostructured Bulk Fe-Cr Alloys by Severe Plastic Deformation

2021 ◽  
Vol 1016 ◽  
pp. 1603-1610
Author(s):  
Lukas Weissitsch ◽  
Martin Stückler ◽  
Stefan Wurster ◽  
Richard Pippan ◽  
Andrea Bachmaier

The processing of binary alloys consisting of ferromagnetic Fe and antiferromagnetic Cr by severe plastic deformation (SPD) with different chemical compositions has been investigated. Although the phase diagram exhibits a large gap in the thermodynamical equilibrium at lower temperatures, it is shown that techniques based on SPD help to overcome common processing limits. Different processing routes including initial ball milling (BM) and arc melting (AM) and a concatenation with annealing treatments prior to high-pressure torsion (HPT) deformation are compared in this work. Investigation of the deformed microstructures by electron microscopy and synchrotron X-ray diffraction reveal homogeneous, nanocrystalline microstructures for HPT deformed AM alloys. HPT deformation of powder blends and BM powders leads to an exorbitant increase in hardness or an unusual fast formation of a σ-phase and therefore impede successful processing.

Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 6 ◽  
Author(s):  
Martin Stückler ◽  
Heinz Krenn ◽  
Reinhard Pippan ◽  
Lukas Weissitsch ◽  
Stefan Wurster ◽  
...  

Samples consisting of one ferromagnetic and one diamagnetic component which are immiscible at the thermodynamic equilibrium (Co-Cu, Fe-Cu, Fe-Ag) are processed by high-pressure torsion at various compositions. The received microstructures are investigated by electron microscopy and synchrotron X-ray diffraction, showing a microstructural saturation. Results gained from microstructural investigations are correlated to magnetometry data. The Co-Cu samples show mainly ferromagnetic behavior and a decrease in coercivity with increasing Co-content. The saturation microstructure of Fe-Cu samples is found to be dual phase. Results of magnetic measurements also revealed the occurrence of two different magnetic phases in this system. For Fe-Ag, the microstructural and magnetic results indicate that no intermixing between the elemental phases takes place.


2016 ◽  
Vol 685 ◽  
pp. 525-529
Author(s):  
Zhanna G. Kovalevskaya ◽  
Margarita A. Khimich ◽  
Andrey V. Belyakov ◽  
Ivan A. Shulepov

The changes of the phase composition, structure and physicomechanical properties of Ti‑40 mas % Nb after severe plastic deformation are investigated in this paper. By the methods of microstructural, X-ray diffraction analysis and scanning electron microscopy it is determined that phase and structural transformations occur simultaneously in the alloy after severe plastic deformation. The martensitic structure formed after tempering disappears. The inverse α'' → β transformation occurs. The structure consisting of oriented refined grains is formed. The alloy is hardened due to the cold working. The Young modulus is equal to 79 GPa and it is less than that of initial alloy and close to the value obtained after tempering. It is possible that Young modulus is reduced by additional annealing.


2006 ◽  
Vol 114 ◽  
pp. 337-344 ◽  
Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

The texture of Al – 0.7 wt. % Li alloy processed by two different methods of severe plastic deformation (SPD) has been investigated by X-ray diffraction, and analyzed in terms of the orientation distribution function (ODF). It was found that severe plastic deformation by both Equal Channel Angular extrusion (ECAE) and Hydrostatic Extrusion (HE) resulted in an ultrafine grained structure in an Al – 0.7 wt. % Li alloy. The microstructure, grain shape and size, of materials produced by SPD strongly depend on the technological parameters and methods applied. The texture of the investigated alloy differed because of the different modes of deformation. In the initial state the alloy exhibited a very strong texture consisting of {111} fibre component. A similar fibrous texture characteristic was also found after HE whereas after the ECAE the initial texture was completely changed.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2670
Author(s):  
Alexander Glezer ◽  
Nikolay Sitnikov ◽  
Roman Sundeev ◽  
Alexander Shelyakov ◽  
Irina Khabibullina

In recent years, the methods of severe plastic deformation and rapid melt quenching have proven to be an effective tool for the formation of the unique properties of materials. The effect of high-pressure torsion (HPT) on the structure of the amorphous alloys of the quasi-binary TiNi–TiCu system with a copper content of more than 30 at.% produced by melt spinning technique has been analyzed using the methods of scanning electron microscopy, X-ray diffraction analysis, and differential scanning calorimetry (DSC). The structure examinations have shown that the HPT of the alloys with a Cu content ranging from 30 to 40 at.% leads to nanocrystallization from the amorphous state. An increase in the degree of deformation leads to a substantial change in the character of the crystallization reflected by the DSC curves of the alloys under study. The alloys containing less than 34 at.% Cu exhibit crystallization peak splitting, whereas the alloys containing more than 34 at.% Cu exhibit a third peak at lower temperatures. The latter effect suggests the formation of regions of possible low-temperature crystallization. It has been established that the HPT causes a significant decrease in the thermal effect of crystallization upon heating of the alloys with a high copper content relative to that of the initial amorphous melt quenched state.


2013 ◽  
Vol 834-836 ◽  
pp. 350-355
Author(s):  
Shu Qiu Wang ◽  
Fan Hao Zeng ◽  
Jiang Feng Song ◽  
Xiao Fen Tan ◽  
Lin Wei Li

The quaternary TixZr1-xMnFe gettering alloys (x =0, 0.1, 0.2, 0.3 and 0.4) were synthesized successfully by arc melting and their phase structures along with microstructures had been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It showed that the addition of Ti did not change the phase structure of ZrMnFe of C14 laves phase. XRD results showed that Ti successfully replaced part of the Zr and the decrease of interplanar spacing had a linear relationship with the increase of Ti content. The success of this trial preparation provides reference for nuclear industry gettering materials.


2011 ◽  
Vol 335-336 ◽  
pp. 841-844 ◽  
Author(s):  
Li Na Zhang ◽  
Bai Xiong Liu

The Microstructure of Cu-Bi master alloy with different melt processes, such as different melting temperature and holding time, was observed by PHILIPS-XL30 scanning electron microscopy (SEM); phase analysis was conducted by Miniflex X-ray diffraction(XRD); Magix(PW2424) X-ray fluorescence analyzer(XRF) was used to analyze chemical compositions of Cu-Bi master alloy. The results show that there are Cu and Bi two phases in the Cu-Bi master alloy; The yielding rate of bismuth decreases with the rising melting temperature. It decreases slowly between 1100 °C to 1150 °C,while it decreases rapidly between 1150 °C to 1200 °C.The bismuth particles in the Cu-Bi master alloy prepared at 1100 °C are much larger than those prepared at 1150 °C,while the size of bismuth particles change little from 1150 °C to 1200 °C. So the better melting temperature of preparing Cu-Bi master alloy is 1150 °C.The yielding rate of bismuth decreases with the holding time increasing. But when the holding time is too short, there are large bismuth particles in Cu-Bi alloy .So the better holding time is 120s.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1939 ◽  
Author(s):  
Gheorghe Gurau ◽  
Carmela Gurau ◽  
Felicia Tolea ◽  
Vedamanickam Sampath

Severe plastic deformation (SPD) is widely considered to be the most efficient process in obtaining ultrafine-grained bulk materials. The aim of this study is to examine the effects of the SPD process on Ni-Fe-Ga ferromagnetic shape memory alloys (FSMA). High-speed high-pressure torsion (HSHPT) was applied in the as-cast state. The exerted key parameters of deformation are described. Microstructural changes, including morphology that were the result of processing, were investigated by optical and scanning electron microscopy. Energy-dispersive X-ray spectroscopy was used to study the two-phase microstructure of the alloys. The influence of deformation on microstructural features, such as martensitic plates, intragranular γ phase precipitates, and grain boundaries’ dependence of the extent of deformation is disclosed by transmission electron microscopy. Moreover, the work brings to light the influence of deformation on the characteristics of martensitic transformation (MT). Vickers hardness measurements were carried out on disks obtained by SPD so as to correlate the hardness with the microstructure. The method represents a feasible alternative to obtain ultrafine-grained bulk Ni-Fe-Ga alloys.


2008 ◽  
Vol 368-372 ◽  
pp. 1143-1145 ◽  
Author(s):  
Ding Fan ◽  
Yao Ning Sun ◽  
Min Zheng ◽  
Jian Bin Zhang ◽  
Yu Feng Zheng

Laser cladding experiment was carried out with a 5 kW continuous wave CO2 laser by preplacing Ni75Si25 and Ni78Si13Ti9 powders onto Ni-based superalloy substrate. The microstructure of the specimens was monitored by using optical and scanning electron microscopy. The chemical compositions of the alloys and their phases were obtained using X-ray diffraction and energy dispersive x-ray spectroscopy. The phase transformation temperatures were determined by non-isothermal differential scanning calorimetry tests. The microhardness of the laser cladded sample was measured.


2016 ◽  
Vol 872 ◽  
pp. 211-215 ◽  
Author(s):  
Pusit Pookmanee ◽  
Atit Wannawek ◽  
Sakchai Satienperakul ◽  
Ratchadapon Putharod ◽  
Nattapol Laorodphan ◽  
...  

This research studies compositions of diatomite, leonardite and pumice for utilization appropriate to the properties of materials. Chemical compositions of these materials were characterized by X–ray fluorescence spectrometry (XRF) and energy dispersive X–ray spectrometry (EDXS). The silica was major component of these materials. The morphology was investigated by scanning electron microscopy (SEM). Diatomite was cylindrical in shape, leonardite was sheet or flake in shape and pumicewas prismatic in shape. The structure was studied by X–ray diffraction (XRD). It was found that the mineral composition of diatomite, leonardite and pumice showed cristobalite low, quartz and anorthite, respectively. The functional groups were identified by Fourier transform infraredspectrometry (FTIR). The functional group of siloxane was obtained and dominated vibration in these materials. And the vibration of carboxylic, alcoholic and carbonyl groups were obtained in leonardite.


Sign in / Sign up

Export Citation Format

Share Document