Operando Monitoring of Charging Processes in Battery Cathodes by Magnetometry and Positron Annihilation

2021 ◽  
Vol 1016 ◽  
pp. 1647-1652
Author(s):  
Gregor Klinser ◽  
Heinz Krenn ◽  
Roland Würschum

Research in the field of modern battery materials demands characterization techniques which allow an inspection of atomistic processes during battery charging and discharging. Two powerful tools for this purpose are magnetometry and positron-electron annihilation. The magnetic moment serves as highly sensitive fingerprint for the oxidation state of the transition metal ions, thus enabling to identify the electrochemical ”active” ions. The positron lifetime on the other hand, is sensitive to open volume defects of the size of a few missing atoms down to single vacancies providing an unique insight into lattice defects induced by charging and discharging. An overview will be given on operando magnetometry studies of the important class of LiNiCoMn-oxide cathode materials (so-called NMC with Ni:Co:Mn ratios of 1:1:1 and 3:1:1) as well as of sodium vanadium phosphate cathodes. First operando positron annihilation studies on a battery cathode material (NMC 1:1:1) demonstrate the capability of this technique for battery research.

2021 ◽  
pp. 2010095
Author(s):  
Chul‐Ho Jung ◽  
Do‐Hoon Kim ◽  
Donggun Eum ◽  
Kyeong‐Ho Kim ◽  
Jonghyun Choi ◽  
...  

1993 ◽  
Vol 321 ◽  
Author(s):  
A. J. Kruk ◽  
H. Schut ◽  
J. Sietsma ◽  
A. Van Veen

ABSTRACTThe first stages of the nano-crystallization process of amorphous Fe75.5Cu1Nb3Si12.5B8 into a nano-crystalline structure are investigated by the positron annihilation lifetime technique. Samples have been isothermally annealed at 643 K for times varying between 600 and 105 seconds. The positron lifetime spectra have been analyzed allowing for three lifetimes. The shortest and the longest lifetime, τ1 = 150 ± 2 ps and τ3 = 1500–2000 ps respectively, are attributed to annihilation of positrons in the amorphous phase and to the formation and annihilation of ortho-positronium at the surface of the stacked foils and did not change significantly upon the annealing. The intermediate positron lifetime τ2 increased from 324 ps to 387 ps. The intensity of this component increased from 5 to 15%. Comparison with resistivity measurements indicates that the change of this lifetime component occurs at an early stage in the crystallisation process, i.e. when the fraction of crystalline material is on the order of 10−3. The increase of τ2 is attributed to positrons annihilating in a region with lower average density surrounding the small crystallite.


2010 ◽  
Vol 666 ◽  
pp. 99-102 ◽  
Author(s):  
Maria Fatima Ferreira Marques ◽  
A.M.G. Moreira Da Silva ◽  
P.M. Gordo ◽  
Z. Kajcsos

Positron annihilation lifetime spectroscopy was used to study the free-volume parameters in various pure -, - and -cyclodextrins samples and, in the case of β-cyclodextrin, with inclusion of S-carvone and thymoquinone. The results clearly indicate the presence of long lifetime components related to Ps-formation. The data show that the addition of S-carvone to β-cyclodextrin results in a decrease of o-Ps lifetime that we ascribe to a reduction of free volume holes from 81.8 to 63.7 Å3. The long lifetime component disappears when thymoquinone is added to -cyclodextrin, indicating this substance acts as an o-Ps quencher. For all samples studied, a decrease in the long lifetime component values was observed with increasing source in situ time, a result that might be attributed to the irradiation of the sample by the 22Na positron source.


2012 ◽  
Vol 27 (1) ◽  
pp. 59-67
Author(s):  
Dusanka Indjic ◽  
Slavica Vukovic ◽  
Snezana Tanaskovic ◽  
Mila Grahovac ◽  
Tatjana Keresi ◽  
...  

In 2009, the sensitivity of 15 field populations of Colorado potato beetle (Leptinotarsa decemlineata Say.) - CPB was assessed to chlorpyrifos, cypermethrin, thiamethoxam and fipronil, four insecticides which are mostly used for its control in Serbia. Screening test that allows rapid assessment of sensitivity of overwintered adults to insecticides was performed. Insecticides were applied at label rates, and two, five and 10 fold higher rates by soaking method (5 sec). Mortality was assessed after 72h. From 15 monitored populations of CPB, two were sensitive to label rate of chlorpyrifos, one was slightly resistant, 11 were resistant and one population was highly resistant. Concerning cypermethrin, two populations were sensitive, two slightly resistant, five were resistant and six highly resistant. Highly sensitive to thiamethoxam label rate were 12 populations, while three were sensitive. In the case of fipronil applied at label rate, two populations were highly sensitive, six sensitive, one slightly resistant and six were resistant. The application of insecticides at higher rates (2, 5 and 10 fold), that is justified only in bioassays, provided a rapid insight into sensitivity of field populations of CPB to insecticides.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7185
Author(s):  
Oliver Gould ◽  
Natalia Drabińska ◽  
Norman Ratcliffe ◽  
Ben de Lacy Costello

Mass spectrometry (MS) is an analytical technique that can be used for various applications in a number of scientific areas including environmental, security, forensic science, space exploration, agri-food, and numerous others. MS is also continuing to offer new insights into the proteomic and metabolomic fields. MS techniques are frequently used for the analysis of volatile compounds (VCs). The detection of VCs from human samples has the potential to aid in the diagnosis of diseases, in monitoring drug metabolites, and in providing insight into metabolic processes. The broad usage of MS has resulted in numerous variations of the technique being developed over the years, which can be divided into hyphenated and real-time MS techniques. Hyphenated chromatographic techniques coupled with MS offer unparalleled qualitative analysis and high accuracy and sensitivity, even when analysing complex matrices (breath, urine, stool, etc.). However, these benefits are traded for a significantly longer analysis time and a greater need for sample preparation and method development. On the other hand, real-time MS techniques offer highly sensitive quantitative data. Additionally, real-time techniques can provide results in a matter of minutes or even seconds, without altering the sample in any way. However, real-time MS can only offer tentative qualitative data and suffers from molecular weight overlap in complex matrices. This review compares hyphenated and real-time MS methods and provides examples of applications for each technique for the detection of VCs from humans.


Author(s):  
Christina Rudolph ◽  
Jürgen Grabe ◽  
Britta Bienen

Offshore monopiles are usually designed using the p-y method for cyclic loading. While the method works for static loading, it was not developed for high numbers of cycles. Since the turbines are highly sensitive towards tilting, cyclic loading must be considered. The static results should therefore be combined with results from cyclic model tests with a high number of cycles to account for the accumulation of displacement or rotation during the lifetime of these structures. These model tests can underestimate the accumulation, however, as it has recently been shown that a change of loading direction can increase the accumulation considerably. These results have been verified using small scale modeling and centrifuge testing. The results from modeling the full problem of a laterally loaded pile are compared here with results from cyclic simple shear tests with a change of shearing direction during the cyclic loading. For these tests, a newly developed apparatus is used. This allows further insight into the question how a soil can “retain a memory” of its loading history.


2017 ◽  
Vol 373 ◽  
pp. 31-34
Author(s):  
Kai Zhou ◽  
Ting Zhang

Positron lifetime calculation has been performed on a computer-generated nanocrystalline copper with a mean grain size of 9.1 nm during its deformation. For the undeformed and deformed nanocrystalline copper, calculated positron lifetimes are around 157 ps which come from the positron annihilation in the free volume in grain boundaries. Due to the grain-boundary deformation mechanism, no vacancies or vacancy clusters will be induced in grains during the plastic deformation of the nanocrystalline copper, which is different to the deformation of the conventional polycrystal. From this point of view, in-situ positron annihilation measurements can provide important experimental information on the deformation mechanism of nanocrystalline metals.


Nature Energy ◽  
2018 ◽  
Vol 3 (8) ◽  
pp. 641-647 ◽  
Author(s):  
A. Singer ◽  
M. Zhang ◽  
S. Hy ◽  
D. Cela ◽  
C. Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document