Structure Formation of Butt Joints Made of Aluminum Alloys to Ensure the Quality of Mechanical Engineering Products

2021 ◽  
Vol 1022 ◽  
pp. 119-126
Author(s):  
Dinaida M. Sharapova ◽  
Mikhail G. Sharapov ◽  
Nikolay I. Sharonov

The article discusses the problems of ensuring high-quality formation and normative properties of butt joints of the 1560M and 1980T1 (AMg6 and B48) aluminum alloys as applied to engineering. A method is proposed for joining materials by means of EBW using an electron beam sweep. Homogeneous and dissimilar joints have been investigated, heat treatment of joint from the 1980T1 alloy and a dissimilar joint from the 1560M + 1980T1 alloys is recommended. The paper also presents the results of mechanical properties testing, the corrosion resistance and the delayed fracture tests. A welding technology that makes it possible to obtain high-quality butt-welded joints from aluminum alloys in thicknesses up to 40 mm has been developed and implemented.

Author(s):  
Morteza Ghaffarpour ◽  
Mohammad Kazemi ◽  
Mohammad Javad Mohammadi Sefat ◽  
Ahmad Aziz ◽  
Kamran Dehghani

In the present study, friction stir welding (FSW) and tungsten inert gas (TIG) techniques were used to join the dissimilar aluminum alloys of 5083-H12 and 6061-T6. The laboratory tests were designed using design of experiment (DOE) method. Variables for the FSW process were the rotational speed, traverse speed, shoulder diameter, and pin diameter. They changed in ranges of 700–2500 r/min, 25–400 mm/min, 10–14 mm, and 2–4 mm, respectively. In the case of TIG process, the variables were current intensity, traverse speed, and tilt angle. These parameters varied from 80 to 90 A, 200 to 400 mm/min, and 3° to 12°, respectively. The optimum amounts of parameters were obtained using response surface methodology (RSM). The RSM-based model was developed to predict ultimate tensile strength (UTS) of the welds produced. In FSW, the difference between predicted and measured UTS was about 1.28% and in TIG it was 1.78%. The good agreement between experimental and predicted results indicates the high accuracy of the developed model. Mechanical properties and also the microstructure of the welds were compared after optimizing both welding processes using RSM. The results showed that the welds produced by FSW indicated a considerably higher quality and also improved mechanical properties compared to TIG. Properties of the joints obtained by FSW in single-sided joints were more desirable. In the double-sided welds obtained by FSW these differences were of an even higher significance.


2013 ◽  
Vol 13 (4) ◽  
pp. 39-42 ◽  
Author(s):  
S. Gnapowski ◽  
Y. Tsunekawa ◽  
M. Okumiya ◽  
K. Lenik

Abstract This experiment utilized five Aluminum alloys with silicon content percentages of 7, 10, 12.6, 14.5 and 17(wt)%. Ultrasonic vibration was applied to improve the quality of aluminum alloys. Sono-solidification, in which ultrasound vibrations are applied to molten metal during its solidification, is expected to cause improved mechanical properties due to grain refinement. Observed by microstructure photographs was that grains became smaller and their shapes more regular. Using ultra sound solidification α Al appeared during ultrasound treatment the eutectic solidification time was longest around 10% compared with same condition experiment without ultrasound treatment.


2019 ◽  
Vol 285 ◽  
pp. 453-458 ◽  
Author(s):  
Ming Fan Qi ◽  
Yong Lin Kang ◽  
Quan Quan Qiu

A simplified and efficient process, namely air-cooled stirring rod (ACSR), was proposed to prepare semisolid slurry of aluminum alloys. An advanced integrated rheological high pressure die-casting (Rheo-HPDC) technology was established by combining the ACSR equipment with HPDC machines to produce high quality aluminum alloy products. Microstructures, surface qualities, mechanical properties, corrosion resistances and thermal conductivities of the Al-8Si alloy parts prepared by Rheo-HPDC were investigated and compared to those prepared by traditional HPDC. The results indicated that the Rheo-HPDC process can prepare aluminum alloy parts in which the primary particles are fine and spherical, and there is few shrinkage porosity. Multifarious high quality large thin-walled aluminum alloy parts, such as filter shells, cooling shells, antenna crates and mounting brackets for communication, were produced by the process. Rheo-HPDC alloys showed improved surface quality to those formed by traditional HPDC, and the surface roughness is small and avoid employing CNC to surface finish. Also, compared with HPDC alloys, the alloys prepared by Rheo-HPDC have an increased mechanical properties and thermal conductivity due to high density and refined microstructure. Furthermore, Rheo-HPDC aluminum alloys indicated a remarkable improvement in corrosion resistance as shown by the results of electrochemical and weight loss experiments.


2020 ◽  
pp. 65-70
Author(s):  
A.N. Feofanov ◽  
V.V. Ovchinnikov ◽  
A.M. Gubin

Friction stir welding of butt joints of aluminum alloys is considered. It is experimentally determined, that when temperature and time parameters are violated, defects in the form of discontinuities are localized at the boundary of the weld and the base metal, due to incompatibility of deformations of the weld metal and the adjacent base material. Keywords friction welding with stirring, aluminum alloy, mode parameters, structure, defects, strength. [email protected]


2007 ◽  
Vol 340-341 ◽  
pp. 587-592 ◽  
Author(s):  
B.J. Kim ◽  
K.H. Choi ◽  
K.S. Park ◽  
Chester J. van Tyne ◽  
Young Hoon Moon

Extruded aluminum alloys, which are highly versatile, have relatively modest prototyping cost, good strength and corrosion resistance. Because there is no weld seam, the circumferential mechanical properties may be uniform and advantageous for hydroforming. However, surface defects such as die lines and pick-up can be generated during the extrusion especially due to imperfections on the die surface. In this study, the extent of the crack propagation caused by die lines is evaluated according to the deformed shape of the tube in hydroforming process. And when forming a extruded aluminum tube, the deformed surface of the tube frequently becomes rougher with increasing plastic strain. This is well known as orange peel phenomenon and it has a significantly effect not only on the surface quality of a final product but also on the forming limit. To evaluate the effects of the orange peel on the hydroformability, the inter-stage polishing has been performed. Through the several tests including hydroforming test, the effect of surface defects on the hydroformabilities are well defined.


2007 ◽  
Vol 330-332 ◽  
pp. 15-18
Author(s):  
Li Liao ◽  
Lin Chen ◽  
Ai Zheng Chen ◽  
Xi Ming Pu ◽  
Yun Qing Kang ◽  
...  

To increase the mechanical properties of PLA used for fracture inner fixation, β-calcium metaphosphate whiskers were prepared by controlled crystallization in the glass. The factors influencing the morphology of the samples, such as component, time and temperature of crystallization were discussed. Results showed that the high quality of β-calcium metaphosphate whiskers can be obtained by crystallization treating for 36 hours and washing for 48 hours at 80°C distilled water. β-calcium metaphosphate whiskers having high aspect ratios of 20-100 with diameters of 1-5μm were achieved at the optimized conditions.


2019 ◽  
Vol 1 (1) ◽  
pp. 319-325
Author(s):  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Magdalena Mazur ◽  
Adrián Herčko

Abstract The quality of aluminum casts is necessary in order to reach sufficient properties required for application. The decreasing in the properties of aluminum cast mainly related with microstructure, especially with size and morphology of second phases. One of such second phases in aluminum alloys are the β-phases. These phases are unwonted mainly because of the decreasing of mechanical properties. The contribution is deal with influence of addition of Mn to affecting the formation of β-phases in the AlSi7Mg0.3 and AlSi7Mg0.6 cast alloys. These materials are used for application especially automotive industry. The results shows, that addition of Mn is not sufficient for affecting of formation of the Fe-rich phases in AlSi7Mg0.6 cat alloys, but in the AlSi7Mg0.3 this addition lead to changes in formation of Fe-rich intermetallic phases.


Sign in / Sign up

Export Citation Format

Share Document