Experimental and numerical analysis of the deformation in mild steel wire during dieless drawing

Author(s):  
P Tiernan ◽  
M T Hillery

Dieless wire drawing is the process of causing a reduction in a wire diameter without the use of conventional wire drawing dies. The wire, axially loaded with a force, is heated to an elevated temperature to initiate plastic deformation. The mechanics of this novel drawing process and a theoretical analysis of the deformation are discussed in this paper. The results of an experimental drawing programme carried out with mild steel wire at temperatures between 400 and 900°C are also presented. Mathematical models were developed and used to describe and predict the process deformation and both the stress and temperature distribution profile along the workpiece. A machine was designed and manufactured to facilitate an experimental programme of dieless drawing. The machine permitted continuous drawing of wire, while the reduction ratio, drawing load and temperature were automatically controlled using a personal computer. A finite element (FE) model of the wire was developed, and the results obtained from the FE analysis show good agreement with those obtained from both the experimental work and the mathematical modelling. Results obtained confirm that a complicated interdependence of the process parameters exists during the dieless drawing process.

1968 ◽  
Vol 183 (1) ◽  
pp. 545-562 ◽  
Author(s):  
C. E. Winsper ◽  
D. H. Sansome

Part 1: Characteristics of complete wire drawing apparatus Part 1 describes the wire drawing machine, instrumentation and oscillatory apparatus designed to establish the effects of applying oscillatory energy to the wire drawing process. A theoretical consideration of the vibration of the equipment is included and compared with experimental data. Tests were performed on a 3000 lbf bull-block and the oscillatory energy was supplied in a longitudinal mode from a 3000 lbf electro-hydraulic oscillator. Equipment was designed to measure drawing force, drawing torque, amplitude of die and drum oscillation, and drawing speed. Frequencies of die oscillation in the range 0–125 Hz were studied with amplitudes up to 0.070 in peak to peak. A study of process parameters, such as natural frequency of the system, damping of the bull-block drive, torsional oscillation of the drum, and die assembly inertia, showed that the analysis was in good agreement with experimental data and that it can be used to predict the effect of oscillations on the forces and torques acting during oscillatory wire drawing. Part 2 presents experimental data obtained from mild steel, hard aluminium, stainless steel and hard copper. Results show that there is no reduction in the peak drawing force and negligible reduction in the coefficient of friction. The results also confirm that oscillatory drawing is a mechanical process of straining and unstraining the drawn wire, and that the reduction in mean force can be determined by a mechanism of force superposition.


2007 ◽  
Vol 340-341 ◽  
pp. 683-688 ◽  
Author(s):  
Sang Kon Lee ◽  
Won Ho Hwang ◽  
Dae Cheol Ko ◽  
Byung Min Kim ◽  
Woo Sik Ko

High speed multi pass wet wire drawing has become very common for production of high carbon steel cord because of the increase in customer demand and production rates in real industrial fields. Although the wet wire drawing is preformed at a high speed usually above 1000 m/min, greater speed is required to improve productivity. However, in the high carbon steel wire drawing, the wire temperature rises greatly as the drawing speed increase. The excessive temperature rise makes the wire more brittle and finally leads to wire breaks. In this study, the variations in wire temperature during wet wire drawing process were investigated. A multi pass wet wire drawing process with 21 passes, which was used to produce steel cord, was redesigned by considering the increase in temperature. Through a wet wire drawing experiment, it was possible to increase the maximum final speed from 1000 m/min to 2000 m/min.


2014 ◽  
Vol 941-944 ◽  
pp. 1667-1670
Author(s):  
Ying Lei Xu

Wire breaking is a major factor in the impact of wire drawing production, and drawing process is an important factor causing the wire breaking, which cannot be ignored. In this paper, the impact of tension, bending stresses, centrifugal stresses, compression ratio of die arrangement and drawing speed in the process of the wire drawing process on wire breaking were calculated theoretically. Then the corresponding measurements to reduce the rate of wire breaking were proposed. The results show that the the tension of drawing process was the main factor, while choosing the right compression ratio and drawing speed according to the actual situation, the rate of wire breaking could be reduced effectively.


2020 ◽  
Vol 989 ◽  
pp. 684-690
Author(s):  
Dmitriy Konstantinov ◽  
Boris Zaritskiy ◽  
Denis Pustovoytov

Cold-drawn high-carbon steel wire with pearlite microstructure is one of the most popular raw materials for modern reinforcing ropes. Lamellae thinning, changes in interlamellar interface and metallographic texture, strain localization is the main property-forming phenomena in the wire drawing process. However, the experimental study of these phenomena dynamics is difficult and time-consuming. Drawing process of pearlitic steel wire was investigated. Behavior of pearlite colonies on the surface and the central layer of the wire were researched, based on the multiscale computer simulation. Cementite lamellae orientation in relation to the drawing axis, interlamellar spacing and shape of cementite inclusions were key factors. Regularities of the pearlite colonies reorientation, changing the shape and size of cementite lamellae and strain localization in the ferrite were established on the basis of FEM. It was established that the cementite lamellae, that are parallel to the drawing axis, had the maximum thinning. Interlamellar distance in pearlite colonies with such lamellae changed most intensively. Cementite lamellae, that are perpendicular to the drawing axis, are the most susceptible to fracture. It was found out that for certain values interlamellar distance this effect can be reduced. Intensive reorientation of pearlite colonies in relation to the drawing axis was observed in the case of their location at an angle to the drawing direction. At the same time, there was a significant bending of cementite lamellae and their susceptibility to fragmentation. Estimated values of the wire mechanical properties were compared with a real experiment. The simulation results were verified by metallographic analysis.


2012 ◽  
Vol 591-593 ◽  
pp. 850-853
Author(s):  
Huai Xing Wen ◽  
Yong Tao Yang

Drawing Dies meter A / D acquisition module will be collected from the mold hole contour data to draw a curve in Matlab. According to the mold pore structure characteristics of the curve, the initial cut-off point of each part of contour is determined and iteratived optimization to find the best cut-off point, use the least squares method for fitting piecewise linear and fitting optimization to find the function of the various parts of the curve function, finally calculate the pass parameters of drawing mode. Parameters obtained compare with the standard mold, both of errors are relatively small that prove the correctness of the algorithm. Also a complete algorithm flow of pass parameters is designed, it can fast and accurately measure the wire drawing die hole parameters.


2021 ◽  
Vol 1035 ◽  
pp. 801-807
Author(s):  
Xiao Lei Yin ◽  
Jian Cheng ◽  
Gang Zhao

High-strength cable-steel bridge is the “lifeline” of steel structure bridges, which requires high comprehensive mechanical properties, and cold-drawing is the most important process to produce high-strength cable-steel bridge. Therefore, through the ABAQUS platform, a bridge wire drawing model was established, and the simulation analysis on the process of stress strain law and strain path trends for high-strength bridge steel wire from Φ 12.65 mm by seven cold-drawing to Φ 6.90 mm was conducted. The simulation results show that the wire drawing the heart of the main axial deformation, surface and sub-surface of the main axial and radial deformation occurred, with the increase in the number of drawing the road, the overall deformation of the wire was also more obvious non-uniformity. In the single-pass drawing process, the change in the potential relationship of each layer of material was small, and multiple inflection points appeared in the strain path diagram; the change in the seven-pass potential relationship was more drastic, which can basically be regarded as a simple superposition of multiple single-pass pulls.


2018 ◽  
Vol 190 ◽  
pp. 04004
Author(s):  
Markus Baumann ◽  
Alexander Graf ◽  
René Selbmann ◽  
Katrin Brömmelhoff ◽  
Verena Kräusel ◽  
...  

Torsion bars are used in automotive engineering as well as in other industrial applications. Such elements are produced by bending cold drawn wires. In conventional drawing processes tensile residual stresses occur near the surface of the wire. Small bending radii, which are required in limited assembly spaces, result in component failure due to reduced formability. Additional operations such as heat treatment or shot peening are necessary to influence the residual stress of the wire and to improve the dynamic stability of the torsion bar. The aim of the research is to reduce tensile residual stresses near the surface of the wire in order to eliminate process steps and to enhance formability. Therefore, a forming technology is developed by using a modified drawing die geometry on the basis of gradation extrusion. Finite element simulation is used to investigate the influences of element geometry, number of elements and process modification on the resulting residual stresses after wire drawing of a steel alloy. The results are evaluated and compared with the conventional wire drawing process. Furthermore, the requirements for the design of an experimental test device will be outlined as well as the measurement of the residual stresses by using X-ray diffraction.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 105 ◽  
Author(s):  
Gustavo Aristides Santana Martinez ◽  
Wei-Liang Qian ◽  
Leonardo Kyo Kabayama ◽  
Umberto Prisco

The efforts to increase the operating speed of the wire drawing process play a crucial role regarding the industrial productivity. The problem is closely related to various features such as heat generation, material plastic deformation, as well as the friction at the wire/die interface. For instance, the introduction of specific lubricants at the interface between the die and the wire may efficiently reduce the friction or in another context, induce a difference in friction among different regimes, as for the case of hydrodynamic lubrication. The present study systematically explores various aspects concerning the drawing process of an electrolytic tough pitch copper wire. To be specific, the drawing speed, drawing force, die temperature, lubricant temperature, and stress distributions are analysed by using experimental as well as numerical approaches. The obtained results demonstrate how the drawing stress and temperature are affected by the variation of the friction coefficient, die geometry, and drawing speed. It is argued that such a study might help in optimizing the operational parameters of the wire drawing process, which further leads to the improvement of the lubrication conditions and product quality while minimizing the energy consumption during the process.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2250 ◽  
Author(s):  
Joong-Ki Hwang

The effect of changing the strain path on texture development, twin kinetics, and mechanical properties in twinning-induced plasticity steel was investigated to understand twinning behavior in more detail. Among the various plastic deformation processes, the wire drawing process was selected to achieve the aims of the study. Specimens of cold-drawn TWIP steel wire under the same effective strain but with different crystallographic textures were successfully fabricated using the effect of the wire drawing direction. Electron backscatter diffraction results showed that the drawn wires using both unidirectional (UD) and reverse-directional (RD) wire drawing processes were characterized as duplex fiber textures of major <111> and minor <100>. It was found that the RD wire had a higher fraction of <111> component at both the center and surface areas compared to the UD wire, because the metal flow of the RD wire was beneficial for the development of a <111> orientation. The pronounced <111> crystallographic orientation of the RD wire activated the twinning rate and geometrically necessary dislocation density, leading to an increase in strength but a decrease in ductility. The strain path is as important as the amount of strain for strengthening the materials, especially those that are deformed by twinning.


Sign in / Sign up

Export Citation Format

Share Document