Functionalization of Multi-Walled Carbon Nanotubes Using Microwave Method

2021 ◽  
Vol 1039 ◽  
pp. 237-244
Author(s):  
Firas K. Mohamad Alosfur ◽  
Noor J. Ridha ◽  
Mohammad Hafizuddin Haji Jumali ◽  
S. Radiman ◽  
Khawla J. Tahir ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) probably hold with each other and agglomerated due to van der Waals force. Functionalized process was used to reduce its ability to agglomerate and to increase dispersion in solution. The present work is focused on the microwave irradiation in order to achieve rapid functionalization of MWCNTs compared with other known techniques. The power of microwave radiation was selected by investigating the structural integrity of the samples by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM), while BET surface area measurement was used to measure the MWCNT surface area before and after treatment. The dispersion test in the solution was performed to determine the separation capability of untreated MWCNTs and f-MWCNTs.

Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
L. Andrés Guerrero ◽  
Lenys Fernández ◽  
Gema González ◽  
Marjorie Montero-Jiménez ◽  
Rafael Uribe ◽  
...  

A hydrogen peroxide (H2O2) sensor and biosensor based on modified multi-walled carbon nanotubes (CNTs) with titanium dioxide (TiO2) nanostructures was designed and evaluated. The construction of the sensor was performed using a glassy carbon (GC) modified electrode with a TiO2–CNT film and Prussian blue (PB) as an electrocalatyzer. The same sensor was also employed as the basis for H2O2 biosensor construction through further modification with horseradish peroxidase (HRP) immobilized at the TiO2–fCNT film. Functionalized CNTs (fCNTs) and modified TiO2–fCNTs were characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray DifFraction (XRD), confirming the presence of anatase over the fCNTs. Depending on the surface charge, a solvent which optimizes the CNT dispersion was selected: dimethyl formamide (DMF) for fCNTs and sodium dodecylsulfate (SDS) for TiO2–fCNTs. Calculated values for the electron transfer rate constant (ks) were 0.027 s−1 at the PB–fCNT/GC modified electrode and 4.7 × 10−4 s−1 at the PB–TiO2/fCNT/GC electrode, suggesting that, at the PB–TiO2/fCNT/GC modified electrode, the electronic transfer was improved. According to these results, the PB–fCNT/GC electrode exhibited better Detection Limit (LD) and Quantification Limit (LQ) than the PB–TiO2/fCNT/GC electrode for H2O2. However, the PB film was very unstable at the potentials used. Therefore, the PB–TiO2/fCNT/GC modified electrode was considered the best for H2O2 detection in terms of operability. Cyclic Voltammetry (CV) behaviors of the HRP–TiO2/fCNT/GC modified electrodes before and after the chronoamperometric test for H2O2, suggest the high stability of the enzymatic electrode. In comparison with other HRP/fCNT-based electrochemical biosensors previously described in the literature, the HRP–fCNTs/GC modified electrode did not show an electroanalytical response toward H2O2.


2017 ◽  
Vol 76 (10) ◽  
pp. 2593-2602 ◽  
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Sedighi ◽  
Ehsan Jabbari

Abstract This paper reports a facile method for removal of sulfate from wastewater by magnetic multi-walled carbon nanotubes (MMWCNTs). Multi-walled carbon nanotubes and MMWCNTs were characterized by X-ray diffraction, Raman, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results of the analysis indicated that MMWCNTs were synthesized successfully. The MMWCNTs can be easily manipulated in a magnetic field for the desired separation, leading to the removal of sulfate from wastewater. Response surface methodology (RSM) coupled with central composite design was applied to evaluate the effects of D/C (adsorbent dosage per initial concentration of pollutant (mgadsorbent/(mg/l)initial)) and pH on sulfate removal (%). Using RSM methodology, a quadratic polynomial equation was obtained, for removal of sulfate, by multiple regression analysis. The optimum combination for maximum sulfate removal of 93.28% was pH = 5.96 and D/C = 24.35. The experimental data were evaluated by the Langmuir and Freundlich adsorption models. The adsorption capacity of sulfate in the studied concentration range was 56.94 (mg/g). It was found out that the MMWCNTs could be considered as a promising adsorbent for the removal of sulfate from wastewater.


2015 ◽  
Vol 1125 ◽  
pp. 266-270
Author(s):  
Hasnizah binti Habibun ◽  
Shareena Fairuz binti Abdul Manaf ◽  
Nur Hashimah Alias ◽  
Nur Shahidah Ab Aziz ◽  
Fazlena Hamzah

Biomethane is an alternative and renewable source that occurred naturally which produced from the anaerobic digestion of organic matter. It can be used as the electricity power generation, water heating and also vehicle fuel. In this study, the characteristics of the nanosilica of the tapioca peel as an adsorbent on the structural and physical properties to store the biomethane were investigated. To enhance the adsorption and desorption performance as well as the structural and physical properties, the nanosilica was modified with the metal oxides. The metal oxides that have been used to modify the nanosilica adsorbent are zinc (II) oxide (ZnO) and nickel (II) oxide (NiO). Both of the modified and unmodified nanosilica structural properties were characterized by using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). While, the physical properties of both of the modified and unmodified nanosilica were characterized by using Brunauer, Emmet, Teller (BET) surface area measurement. The effects of both types of metal oxides with different concentration were investigated. Based on the results obtained, the structural and physical characteristics of the nanosilica were affected by the different metal oxides loading. It have been identified that 1% ZnO modified nanosilica has highest BET surface area (8.32 m2/g) with pore volume (19.23 cc/g) and pore size (82.8 nm). Thus, it concluded that 1% ZnO modified nanosilica improved the structural and physical structure. Hence, it enhances the capacity of methane adsorption and desorption prior to storage system.


2010 ◽  
Vol 636-637 ◽  
pp. 714-721 ◽  
Author(s):  
K. Kordatos ◽  
A. Ntziouni ◽  
A. Theodoratou ◽  
Maria Perraki ◽  
M. Terrones ◽  
...  

The present work describes the synthesis of nitrogen doped multi-walled carbon nanotubes (CNx CNT). The chosen production method was the catalytic pyrolysis of a solid mixture containing [Ni(DMG)2] and melamine (C3H6N6), under an Αr atmosphere. A series of various experiments were performed, using different proportions of the reaction mixture, in order to optimize the production conditions of nitrogen doped carbon nanotubes. Finally, the produced materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), Raman spectroscopy as well as thermogravimetric analysis (TGA). The obtained data from all the above analyses, showed the formation of nitrogen doped carbon nanotubes of various diameters as well as nanofibers surrounded by byproducts such as aggregations of amorphous carbon and metallic catalyst, depending on the proportion of the reaction mixture.


2006 ◽  
Vol 48 ◽  
pp. 50-54 ◽  
Author(s):  
Th. Dikonimos Makris ◽  
L. Giorgi ◽  
R. Giorgi ◽  
Nicola Lisi ◽  
Elena Salernitano ◽  
...  

Aiming at the purpose of using carbon nanotubes as secondary phase in composite materials, removal of metal catalyst, catalyst support and amorphous carbon is crucial to make the most of the required properties. A purification method was developed to remove the metal catalyst from multi-walled nanotubes grown by thermal CVD. A nanosized Fe-based catalyst, prepared by coprecipitation of iron and aluminum ions, followed by solid state reaction, was used to catalyze the growth. Carbon nanotubes were subjected to acid purification and a comparison between nitric acid and a mixture of nitric and hydrochloric acid for the removal of Fe and Fe oxides is provided. Morphological and spectroscopic analyses of the materials were performed, both before and after the purification processes.


2010 ◽  
Vol 257 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Changzhou Yuan ◽  
Laifa Shen ◽  
Diankai Li ◽  
Fang Zhang ◽  
Xiangjun Lu ◽  
...  

NANO ◽  
2018 ◽  
Vol 13 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Guiqiang Diao ◽  
Hao Li ◽  
Hao Liang ◽  
Iryna Ivanenko ◽  
Tetiana Dontsova ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were synthesized onto a series of individual and bimetallic catalysts by the chemical vapor deposition (CVD) of acetylene at low temperature (600[Formula: see text]C). The catalysts were prepared by two methods, i.e., precipitation and sol–gel, with two different carriers – MgO and Al2O3. The catalysts were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric (TG) analysis, low-temperature adsorption of nitrogen. The yield of the MWCNTs was calculated in two ways, while the highest yield of 800% was achieved onto the two-component NiO/Co2O3/MgO catalyst, SEM and transmission electron microscopy (TEM) results confirm that uniform tube-like structure MWCNTs with the yield of 410% were obtained onto Co2O3/Al2O3 catalyst. These MWCNTs are smooth and pointing in the same direction. Their tube diameter is about 20[Formula: see text]nm, which is the smallest around all observed MWCNTs. Moreover, nonuniform curved bamboo-like MWCNTs with nozzles in the yield of 760% were obtained onto NiO/V2O3/MgO catalyst. Their diameter ranges from 25[Formula: see text]nm to 50[Formula: see text]nm. Results show that single-component catalyst promotes the growth of uniform and smaller nanotubes. Among the as-grown nanotubes, their specific surface area increases and average pores diameter reduces after the treatment with concentrated nitric acid at reflux and washing condition. The largest specific surface area (305[Formula: see text]m2/g) and average pores diameter (26[Formula: see text]m2/g) are processed to MWCNTs grown onto the NiO/Co2O3/MgO catalyst. MWCNTs with such large structural adsorption characteristics and purity of more than 99% obtained with yield 800% show potential use for preparation of nanocomposites as anode materials in lithium ion batteries.


Author(s):  
Jie Huang ◽  
Xiaojie Sui ◽  
Haishan Qi ◽  
Xiang Lan ◽  
Simin Liu ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have displayed great potential as catalyst carriers due to their nanoscale structure and large specific surface area. However, their hydrophobicity and poor dispersibility in water restrict...


2020 ◽  
Vol 30 ◽  
pp. 41-54
Author(s):  
Shelan A. Farman ◽  
Muayed K. Ibrahim ◽  
Kadhim A. Aadim

Nanocarbon structures such as graphene (GR), single-walled carbon nanotubes (SWCNTs) as well as the multi-walled carbon nanotubes (MWCNTs) were deposited on crystalline n-type silicon wafers to fabricate nanoCarbon-Si solar cells. Nanocarbon films deposited on glass and porous silicon (PS) via pulse laser deposition (PLD) with the use of Q-Switching Nd: YAG laser with λ=1064 (nm), Energy (E)=700 (mJ), Repetition rate (f)=6 (HZ) under vacuum condition with 2.5×10-2 (mbar). The surface morphology, structure, and optical Nanocarbon thin films have been examined with the use of X-ray Diffraction (XRD), Atomic force microscope (AFM), FTIR spectrophotometer and UV-visible. In addition, the power conversion efficiency that is related to the prepared solar cells is estimated through J-V characterization. The PCE of all Nanocarbon/PS follows the orders; SWCNTs/PS < MWCNTs/PS< GR/PS.


Sign in / Sign up

Export Citation Format

Share Document