Shape Memory Alloy Pipe-Joint with Copper Coating

2005 ◽  
Vol 475-479 ◽  
pp. 1957-1960
Author(s):  
Lei Wang ◽  
De Sheng Yan ◽  
Zhi Min Jiang ◽  
Li Jian Rong

In order to improve the performance of pipe couplings, a technique has been developed to electroplate copper on the inner surface of Ni-Ti-Nb pipe-joints after pre-deformation. Gas leak tightness and tensile tests were conducted to evaluate the performance of the couplings both with and without copper coating. It was found that electroplating a thin copper layer on the inner surface of the pipe-joint effectively solved the problem of leakage and greatly enhanced the pull-out force of the couplings. Furthermore, the pipe-joints without ribs can be demounted easily after being cooled to the liquid nitrogen temperature and benefit the maintenance of the pipeline.

2021 ◽  
Vol 2083 (2) ◽  
pp. 022072
Author(s):  
Yun Tian ◽  
Qi Yao ◽  
Dong Jiang ◽  
Yanni Xiao ◽  
Licheng Liu ◽  
...  

Abstract Aiming at the leakage phenomenon of pipeline system due to corrosion and other reasons, a split type iron-based shape memory alloy pipe joint based on the button bond connection was designed for repair. This split-type pipe joint can be used for quick in-situ maintenance of pipelines without cutting off pipelines or stopping transmission without pressure relief. It is especially suitable for intensive pipeline maintenance and online emergency maintenance. In order to study the connection performance of the split iron-based shape memory alloy pipe joint, this paper took the Fe17Mn4Si10Cr4Ni alloy pipe joint as the research object, and carried out pressure sealing and pull-out experiments respectively on the integral pipe joint and the split pipe joint which had not been carried out and had been subjected to one heat and mechanical training. The results showed that, compared with the integral pipe joint, the pressure seal value of the split pipe joint decreased by 40% to 20MPa and the pulling force decreased by 48.9% without heat-mechanical training. However, after 1 time of thermal-mechanical training, the pressure sealing value of the split-type pipe joint decreased by 12.5% to 32MPa and the pulling force decreased by 21.2% compared with the integral pipe joint. It can be seen that thermal-mechanical training can significantly improve the joint performance of split pipe joints, and the split pipe joint can meet the requirements of medium and low pressure pipeline connection and maintenance.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiang Chen ◽  
Bin Chen ◽  
Xianghe Peng ◽  
Xiaoqing Jin ◽  
Ying Ma ◽  
...  

The assembling process of Ni47Ti44Nb9 alloy pipe joints considering the phase transformation and plasticity was numerically simulated for the first time with a developed constitutive model. The simulated process was based on the experimental material parameters, which were determined with the experimental tensile results of Ni47Ti44Nb9 shape memory alloy (SMA) and steel bars. The results showed that, after assembly, the Mises stress distributed uniformly along the longitudinal direction of the NiTiNb joint, but nonuniformly along the radial direction. The maximum σeq does not appear at the inner wall of the joints due to the coupling effect of the plastic deformation and the recoverable transformation. The contact pressure distributed uniformly along the circumferential direction, but nonuniformly along the longitudinal direction. The sizes of the SMA joint and the pipe should be properly matched to ensure contact during the stage of the rapid reverse phase transformation to obtain stable connection performance. The pull-out force was also computed, and the results were in good agreement with the experimental results. The results obtained can provide available information for the optimization of the design parameters of the high-performance SMA pipe-joint, such as inner diameter and assembly clearance.


2014 ◽  
Vol 484-485 ◽  
pp. 105-109
Author(s):  
Shao Yun An

The copper-based shape memory alloy pipe joint was applied in the field of oil pipelines jointing as well as installing. It has many advantages than anything. In the paper, the basic principle and connection influence factors of copper-based shape memory alloy pipe joint were described. Experimental results shows the copper-based shape memory alloy pipe joints can be used in oilfield oil pipeline connection and it can solve the inner pipe joint corrosion damage problem by welding.


Author(s):  
Fuminori Iwamatsu ◽  
Nobuyoshi Yanagida ◽  
Katsumasa Miyazaki

Intergranular stress corrosion cracking (IGSCC) has been still one of concerns at the weld zone in boiling water reactors (BWRs). Therefore, Weld Overlay (WOL) process has been developed and applied to repair of BWR pipe joints. To understand residual stress and crack growth behavior is important to evaluate the reliability of pipe joints with WOL. In this paper, the residual stresses were calculated by using thermal elasto-plastic analysis by finite element method (FEM). The analytical model was assumed the primary loop recirculation (PLR) pipe joint with WOL followed by the Japanese guideline. The tensile hoop residual stress was changed to compressive stress on the inner surface of the pipe. On the other hand, tensile axial residual stress was occurred on the inner surface of the pipe by butt-welding and some WOL cases increased the tensile axial stress. In addition, the stress intensity factor for fully circumferential cracks was evaluated using calculated residual stress distributions. As a result, the effect of application of WOL on the crack growth behavior is insignificant in PLR pipe joint.


2005 ◽  
pp. 1957-1960
Author(s):  
Lei Wang ◽  
De Sheng Yan ◽  
Zhi Min Jiang ◽  
Li Jian Rong

1986 ◽  
Vol 2 (01) ◽  
pp. 18-22 ◽  
Author(s):  
H. W. Mergler

There is a direct relationship between pipe joint welding times and applied weld volume. This paper gives the computations necessary to define the locus for the branch saddle as a function of certain variables and of the optimized bevel angle. Joint configurations were studied for weld area variations for both fixed and optimized bevel angle configurations. Results demonstrated a considerable reduction in weld volume when the optimized volume was compared with the volume obtained using a fixed bevel angle.


2021 ◽  
Author(s):  
Ghiath (Guy) Mansour

Abstract Minimizing the stress concentration factor (SCF) in pipe joint welding subjected to fatigue is a major concern. Machining the joint ends is one way to achieve this. However, this adds cost, time, risk of potential crack starters, and loss of wall thickness which is detrimental for fatigue, strength, and engineering criticality assessment (ECA) in particular. Pipe joint sorting (certain joints in sequence) and end matching (rotating the pipe joints for best fit) are other ways. However, this adds time, costly logistics, risk of errors, and does not guarantee the minimum possible SCF is achieved. In a typical project, more pipe joints are procured than required in order to mitigate contingencies. For pipelines, this overage is typically a percentage of the required number of joints or pipeline length. For risers, typically double the required number of joints is procured where half of the joints is sent offshore for installation and the remaining half is kept onshore for a spare riser. Then, it becomes very important to send for installation the best pipe joints that produce the best (lowest) SCFs out of the entire batch of pipe joints. This requires calculating the SCF for every potential match of any random joints to be welded together, and then choosing the best joints. Performing such calculations by spreadsheet is not feasible considering the tremendous number of required iterations and calculations. A pipe joint management software development is presented herein which accomplishes this task and examples provided to illustrate the benefits. Note: Selecting pipe joints with the best end measurements, whether ID, OD, OOR, or thickness does not guarantee that the minimum possible SCFs will be achieved since the SCF is a function of all those measurements.


2018 ◽  
Vol 29 (15) ◽  
pp. 3151-3164 ◽  
Author(s):  
Fathollah Taheri-Behrooz ◽  
Mohammad Javad Mahdavizade ◽  
Alireza Ostadrahimi

Due to the weak interface in shape memory alloy wire–reinforced composites, the influence of interphase on the mechanical properties and stress distribution of hybrid composites is of considerable importance. In this article, a three-cylinder axisymmetric model using a pull-out test is developed to predict stress transfer and interfacial behavior between shape memory alloy wire, interphase, and matrix. In this article, only superelasticity behavior of the shape memory alloy wire is considered. Based on the stress function method and the principle of minimum complementary energy, stress distribution is derived for three different cases in terms of loading and boundary conditions (thermal loading model, intact model, and partially debonded model). Inhomogeneous interphase and different radial and hoop stress components in each phase are considered to achieve deeper physical understanding. Finite element analysis also performed to simulate stress transfer from the wire to the matrix through the interphase. To evaluate the accuracy of this model, the results of the work are compared with the results of the two-cylinder model proposed by Wang et al. and finite element results.


Author(s):  
Hongchun Xie ◽  
Jack Zhou ◽  
Parkson Chong

Window-type high-pressure optical cells (HPOC) such as the one designed by Paladini and Weber [Rev. Sci. Instrum. 52, (1981) p. 419] have provided biophysicists a powerful tool to understand the structure-function relationships of biological molecules. However, the conventional HPOC is only good for single solution testing and does not allow for quick mixing and stirring of additional components while the sample is under pressure. To mix two solutions under pressure, Zhou et al [Rev. Sci. Instrum. 69, (1998) p. 3958] developed a laser activated dual chamber HPOC. However, the expensive laser device and its unavailability in most laboratories make the application difficult. In a later study, Zhou et al. [Rev. Sci. Instrum. 71, (2000) p. 4249] introduced shape memory alloy (SMA) as an actuator to unplug a urethane stopper with a biasing spring for agitation. The drawback is that the biasing spring blocks the observing light beam and creates unwanted reflections. This research is to construct an actuator with concentric SMA spring and compressive biasing spring: an SMA helical tensile spring to pull out the stopper to let two solutions mix; and a helical compressive spring to bias and to agitate solutions, and to leave the lower half cuvette clear for optical observation. Due to the limited space in the cuvette, the alignment of two springs is critical for both motion and heat response to activate each spring separately. This paper discusses the design of SMA actuator, SMA spring testing and mixing testing by the SMA spring actuator. Since SMA (nickel-titanium) spring is not solderable and crimping method is limited due to the space, a conductive adhesive is used not only to fix the alignment between springs and cap, but also to conduct electric current. Spring force testing was done by INSTRON. Mixing testing used flourescein intensity change to trace the mixing process. The bio-compatibility of the nickel-titanium SMA with proteins and phospholipids has also been tested.


Sign in / Sign up

Export Citation Format

Share Document