Determination of Optimum Parameters Effect on Kerf Width of 316L Stainless Steel Tube in Nd:YAG Laser Cutting

2005 ◽  
Vol 475-479 ◽  
pp. 277-280
Author(s):  
J.M. Ahn ◽  
H.Y. Kim ◽  
T.H. Kim

The effects of following four factors, which are laser power, assist gas pressure, cooling rate and scanning speed on the quality characteristics of laser cut 316L stainless steel tubes have been studied. 24 full factorial design and central composite design were used to evaluate optimum condition of process parameters. Regression analysis was used to develop empirical models for the combined effects of the independent process parameters on laser cut quality. As the results, it was observed that laser power, assist gas pressure and scanning speeds did the major effects on kerf width. The smallest kerf width was obtained with the condition of low laser power, assist gas pressure, scanning speed and moderate cooling rate. Calculated regression model was kerf width = 64.47 + 0.91W + 1.25P + 0.41S + 0.41C2 - 0.45P2

Author(s):  
Jun Fang ◽  
Shiqiang Lu ◽  
Kelu Wang ◽  
Zhengjun Yao

In order to achieve the precision bending deformation, the effects of process parameters on springback behaviors should be clarified preliminarily. Taking the 21-6-9 high-strength stainless steel tube of 15.88 mm × 0.84 mm (outer diameter × wall thickness) as the objective, the multi-parameter sensitivity analysis and three-dimensional finite element numerical simulation are conducted to address the effects of process parameters on the springback behaviors in 21-6-9 high-strength stainless steel tube numerical control bending. The results show that (1) springback increases with the increasing of the clearance between tube and mandrel Cm, the friction coefficient between tube and mandrel fm, the friction coefficient between tube and bending die fb, or with the decreasing of the mandrel extension length e, while the springback first increases and then remains unchanged with the increasing of the clearance between tube and bending die Cb. (2) The sensitivity of springback radius to process parameters is larger than that of springback angle. And the sensitivity of springback to process parameters from high to low are e, Cb, Cm, fb and fm. (3) The variation rules of the cross section deformation after springback with different Cm, Cb, fm, fb and e are similar to that before springback. But under same process parameters, the relative difference of the most measurement section is more than 20% and some even more than 70% before and after springback, and a platform deforming characteristics of the cross section deformation is shown after springback.


2019 ◽  
Vol 801 ◽  
pp. 239-244
Author(s):  
Xin Yu Liu ◽  
Lu Pan ◽  
Wen Hao Wang ◽  
Si Yao Li

With different process parameters (laser power, scanning speed and scanning distance),the low-time defects of forming part were studied by microscope,including air bubble, pore, micro-crack and macro-crack. The formation mechanism of pore-defect was analyzed. The micro-structure and composition of the pore-defect were studied by means of SEM and EDS. The results showed that the porosity mainly included circular air porosity, irregular process porosity and oxide inclusion.Linear energy density (E=P/v) was introduced as synthetic parameter.According to analysis and test verification, the optimum technological parameters of 316L stainless steel were laser power 190-210KW, laser speed 800-1000mm/s and scanning interval 0.9-0.11mm,and the linear energy density was about 200J/m. There were no cracks, no bubbles, a small amount of porosity, and the product density reached 99.7%.


2014 ◽  
Vol 37 ◽  
pp. 53-63 ◽  
Author(s):  
S. Kaewkumsai ◽  
S. Auampan ◽  
K. Wongpinkaew ◽  
E. Viyanit

Author(s):  
Yong Deng ◽  
Zhongfa Mao ◽  
Nan Yang ◽  
Xiaodong Niu ◽  
Xiangdong Lu

Although the concept of additive manufacturing has been proposed for several decades, momentum of selective laser melting (SLM) is finally starting to build. In SLM, density and surface roughness, as the important quality indexes of SLMed parts, are dependent on the processing parameters. However, there are few studies on their collaborative optimization in SLM to obtain high relative density and low surface roughness simultaneously in the previous literature. In this work, the response surface method was adopted to study the influences of different processing parameters (laser power, scanning speed and hatch space) on density and surface roughness of 316L stainless steel parts fabricated by SLM. The statistical relationship model between processing parameters and manufacturing quality is established. A multi-objective collaborative optimization strategy considering both density and surface roughness is proposed. The experimental results show that the main effects of processing parameters on the density and surface roughness are similar. It is noted that the effects of the laser power and scanning speed on the above objective quality show highly significant, while hatch space behaves an insignificant impact. Based on the above optimization, 316L stainless steel parts with excellent surface roughness and relative density can be obtained by SLM with optimized processing parameters.


Author(s):  
Chunyang Pan ◽  
Changfeng Xu ◽  
Jun Zhou

Abstract Due to the good biocompatibility, 316L stainless steel is widely used in the manufacture of medical instru-ments and human implants. The super hydrophilic 316L steel surface is used for reducing friction and adhe-sion. By choosing appropriate laser process parameters 316L steel surfaces with super-hydrophilic were ob-tained. The effects of laser process parameters including repeat frequency, pulse width, scanning speed, and the number of scanning were investigated to find the relationship between surface microstructure and wet-ting ability. To investigate the super-hydrophilic maintenance time on the textured surface, the textured sur-faces were preserved in ambident air, distilled water, and absolute ethanol. The results showed that by choosing appropriate laser process parameters surface with super-hydrophilicity can be maintained for 30 days.


Friction ◽  
2020 ◽  
Author(s):  
Hongqin Ding ◽  
Qing Tang ◽  
Yi Zhu ◽  
Chao Zhang ◽  
Huayong Yang

AbstractCavitation erosion degrades the performance and reliability of hydraulic machinery. Selective laser melting (SLM) is a type of metal additive manufacturing technology that can fabricate metal parts directly and provide lightweight design in various industrial applications. However, the cavitation erosion behaviors of SLM-fabricated parts have rarely been studied. In this study, SLM 316L stainless steel samples were fabricated via SLM technology considering the scanning strategy, scanning speed, laser power, and build orientation. The effect of the process parameters on the cavitation erosion resistance of the SLM-fabricated 316L stainless steel samples was illustrated using an ultrasonic vibratory cavitation system. The mass loss and surface topography were employed to evaluate the surface cavitation damage of the SLM-fabricated 316L stainless steel samples after the cavitation test. The cavitation damage mechanism of the SLM-fabricated samples was discussed. The results show that the degree of cavitation damage of the sample fabricated via SLM with a few defects, anisotropic build direction, and columnar microstructure is significantly decreased. Defects such as pores, which are attributed to low laser power and high scanning speed, may severely aggravate the cavitation damage of the SLM-fabricated samples. The sample fabricated via SLM with a low laser power and exposure time exhibited the highest porosity and poor cavitation erosion resistance. The cellular structures are more prone to cavitation damage compared with the columnar structures. A sample with a high density of grain boundaries will severely suffer cavitation damage.


Author(s):  
Z. Xu ◽  
R. S. Amano ◽  
J. M. Lucci ◽  
Steven Gerard Marek ◽  
Pradeep Rohatgi ◽  
...  

The objectives of this work are to study Laser Engineered Net Shaping (LENS™) produced materials and identify the microstructures. Numerical method was used to examine the influence of materials’ type and LENS™ process parameters on the forming of the specific microstructures from thermodynamics and fluid dynamics point of view. Samples of 316L stainless steel were examined, microstructures of samples were used to estimate the corresponding cooling rate, and the cooling rate was compared with the results of three different level of simplified models.


Sign in / Sign up

Export Citation Format

Share Document