Modification of Electroless Nickel-Plating Coatings with Sol-Gel Film

2005 ◽  
Vol 475-479 ◽  
pp. 3835-3838 ◽  
Author(s):  
Hui Cong Liu ◽  
Liqun Zhu ◽  
Yan Bin Du

Four Sol-Gel films were developed by dip-coating electroless nickel-plated samples in different Sols, followed by heat treatment. The effects of the coating times and heat treatment temperature on the corrosion, oxidation resistance and wearing quality of the modified coating were examined. Results show that, after six coating, Sol-Gel films obtained can provide good corrosion and oxidation resistance, and their anti-corrosion quality remains high even after being oxidized at 500 °C for 60 hours. Addition of inorganic molybdenum salt or chromate into the Ti Sol also makes the wearing quality of the Sol-Gel film better.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Rezaee ◽  
Gh. R. Rashed ◽  
M. A. Golozar

Sol-gel 8 wt.% Yttria Stabilized Zirconia (YSZ) thin films were prepared on zirconium (zircaloy-4 alloy) by dip-coating technique followed by heat treating at various temperatures (200°C, 400°C, and 700°C) in order to improve both electrochemical corrosion and high temperature oxidation properties of the substrate. Differential thermal analysis and thermogravimetric analysis (DTA-TG) revealed the coating formation process. X-ray diffraction (XRD) was used to determine the crystalline phase structure transformation. The morphological characterization of the coatings was carried out using scanning electron microscopy (SEM). The electrochemical behavior of the coated and uncoated samples was investigated by means of open circuit potential, Tafel, and electrochemical impedance spectroscopy (EIS) in a 3.5 wt.% NaCl solution. The homogeneity and surface appearance of coatings produced was affected by the heat treatment temperature. According to the corrosion parameters, the YSZ coatings showed a considerable increase in the corrosion resistance, especially at higher heat treatment temperatures. The coating with the best quality, from the surface and corrosion point of view, was subjected to oxidation test in air at 800°C. The coated sample presented a 25% reduction in oxidation rate in comparison with bare substrate.


2000 ◽  
Vol 15 (5) ◽  
pp. 1190-1194 ◽  
Author(s):  
Masayuki Nogami ◽  
Tomotaka Ishikawa ◽  
Tomokatsu Hayakawa ◽  
Tomokatsu Hayakawa

The sol-gel technique was applied to the preparation of Eu3+ ion–doped films, which showed persistent spectral hole burning. A gel film of ∼3500-nm thickness was prepared by dip-coating of the solution synthesized from Si(OC2H5)4, CH3Si(OC2H5)3, Eu(NO3)3 · 6H2O, and hydropropyl-cellulose. The spectral hole was burned in the 7F0 → 5D0 transition band of the Eu3+ ions at 7 K, the depth of which was 24% of the total fluorescence intensity and decreased as the heat-treatment temperature of film increased. It was found that the hole was thermally filled and erased above ∼170 K; the temperature at which the hole was erased was lower for the film heated at high temperature.


2009 ◽  
Vol 60-61 ◽  
pp. 283-287
Author(s):  
Jia Qin Liu ◽  
Yu Cheng Wu ◽  
Guang Hai Li ◽  
Li De Zhan

CuO/SiO2 nanocomposite films were prepared by sol-gel process combined with the dip-coating technique. The mean diameter of CuO nanoparticles formed during the heat treatment process and mainly lay in the pores of mesoporous SiO2 matrix increased by increasing the heat treatment temperature. Consequently, compared with mesoporous SiO2 matrix, the pore volume and specific surface area of prepared samples descend. The diffraction peaks of Cu and CuO and the crystalline diffraction ring of CuO with body centered cubic structure can be clearly observed after heat-treated in air and H2 at 800 oC for 1h. By increasing the heat treatment temperature and concentration of CuO, a slightly red-shift could be observed.


2004 ◽  
Vol 19 (2) ◽  
pp. 667-675 ◽  
Author(s):  
Noriyuki Wada ◽  
Michiyo Kubo ◽  
Nobuko Maeda ◽  
Maegawa Akira ◽  
Kazuo Kojima

Ta2O5–xEr2O3 (TE) films were produced by a sol-gel method and a dip-coating technique with heat treatment at 600–1000 °C. Their powders were also prepared from the same sol. The Er3+ fluorescence property of the TE films containing various contents of Er3+ was measured as a function of the heat-treatment temperature. In crystallized films, the Er3+ fluorescence was observed because water-related residues (Ta–OH and H2O) and carbon-related residues (–CH3, –CH2–, –(C ⁼ O)–, and C≡C–H) were removed from the films. It is shown from infrared absorption spectroscopy that Ta–O− and Ta ⁼ O structures dissolve the Er3+ ions selectively and play a role in dispersing the Er3+. The strongest Er3+ fluorescence is observed in the TE film with 2 mol% of Er2O3 because of its highest ability to disperse the Er3+ ions.


2007 ◽  
Vol 124-126 ◽  
pp. 1031-1034
Author(s):  
Bong Soo Jin ◽  
Bok Ki Min ◽  
Chil Hoon Doh

To find out suitable Si surface treatment and heat treatment conditions, acid treatment of Si wafer was done for lithium polysilicate electrolyte coating on Si wafer. In case of HCl treatment, the wet angle of a sample is 30o, which is the smallest wet angle of other acid in this experiment. Acid treatment time is 10 min, which is no more change of wet angle. Lithium polysilicate electrolyte was synthesized by hydrolysis and condensation of lithium silicate solution using perchloric acid. Thermal analysis of lithium polysilicate electrolyte shows the weight loss of ~23 % between 400 and 500 , which is due to the decomposition of LiClO4. The XRD patterns of the obtained lithium polysilicate electrolyte also show the decrement of LiClO4 peak at 400 . The optimum heat treatment temperature is below 400 , which is the suitable answer for lithium polysilicate electrolyte.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Francisco J. Cano ◽  
Orlando Castilleja-Escobedo ◽  
L. J. Espinoza-Pérez ◽  
Cecilia Reynosa-Martínez ◽  
Eddie Lopez-Honorato

The effect of yttria concentration (0-33.4 mol%), extraction rates (0.17, 0.33, 0.50, and 0.67 mm s-1), and the number of layers (up to four) on the phase content, surface defects, thickness, hardness, adhesion strength, and wear rate of yttria-stabilized zirconia coatings produced by sol-gel/dip-coating were studied for its use on thermolabile substrates. At 700°C, a metastable tetragonal phase ( t ″ ) was obtained even with 33.4 mol% yttria when heat treated for 24 hours; however, a fully cubic structure was attained by extending the heat treatment up to 48 hours as confirmed by Raman spectroscopy. Furthermore, it was necessary to use withdrawal speeds of at least 0.67 mm s-1 to produce defect-free coatings. Although the coatings were produced at low temperature, they showed 41% lower wear rate than steel and an adhesion strength of 30 MPa. Our work stresses the importance of the heat treatment history on the stabilization of the cubic phase in sol-gel YSZ coatings.


2013 ◽  
Vol 712-715 ◽  
pp. 257-261
Author(s):  
Yin Lin Wu ◽  
Qing Hui Wang ◽  
Ling Wang ◽  
Hai Yan Zhao

The La0.75Sr0.25Cr0.5Mn0.5O3-δnanometer powders were prepared by citric acid sol-gel method.The samples were characterized by DTA, FT-IR, XRD, TEM techniques. The preparation process, morphology of synthesized powders, the best heat-treatment temperature and the electrochemical performance had been studied. The results show that the spherical nanometer powders can be obtained and the best heat-treatment temperature is 800°C. The particle size is about 30nm and Ea is 0.071 eV.


2014 ◽  
Vol 26 (7) ◽  
pp. 72005
Author(s):  
张日东 Zhang Ridong ◽  
严鸿维 Yan Hongwei ◽  
吕海兵 Lü Haibing ◽  
张尽力 Zhang Jinli ◽  
晏良宏 Yan Lianghong ◽  
...  

2010 ◽  
Vol 105-106 ◽  
pp. 123-125 ◽  
Author(s):  
Yong Li ◽  
Qi Hong Wei ◽  
Ling Li ◽  
Chong Hai Wang ◽  
Xiao Li Zhang ◽  
...  

In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.


2011 ◽  
Vol 148-149 ◽  
pp. 534-537
Author(s):  
Chun Xiang Gao

A very effective approach to improve the oxidation resistance of Ti-6Al-4V alloy was proposed. The Ti-6Al-4V alloy was firstly phosphated and then coated by silica using sol-gel dip-coating technique. A duplex layer of TiP2O7 and amorphous silica was synthesized at the alloy surface. The isothermal and cyclic oxidation behavior of the treated alloy with silica coating and the corresponding bare alloy was investigated at 600 oC in static air to investigate the synergetic effect of phosphorization and amorphous SiO2 coating on the oxidation resistance of the alloy. The isothermal and cyclic oxidation resistances of the alloy were greatly improved.


Sign in / Sign up

Export Citation Format

Share Document