Microstructure and Thermal Stability of Ultra Fine Grained Mg and Mg-Gd Alloys Prepared by High-Pressure Torsion

2005 ◽  
Vol 482 ◽  
pp. 183-186 ◽  
Author(s):  
Jakub Čížek ◽  
Ivan Procházka ◽  
Bohumil Smola ◽  
Ivana Stulíková ◽  
Radomír Kužel ◽  
...  

Bulk samples of pure Mg and Mg-Gd alloys were prepared by high-pressure torsion (HPT). The HPT made samples exhibit ultra fine grained (UFG) structure with grain size around 100 nm. Results of microstructure investigations of the UFG samples obtained by positron lifetime (PL) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) are presented. In particular, lattice defects introduced by HPT were characterized. The data obtained at atomistic level are compared with macroscopic properties given by microhardness measurements.

2010 ◽  
Vol 150-151 ◽  
pp. 386-390
Author(s):  
Yuan Xun Li ◽  
Ying Li Liu ◽  
Huai Wu Zhang ◽  
Wei Wei Ling

The rod-shaped polyaniline (PANI)-barium ferrite nanocomposites were synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The composites obtained were characterized by infrared spectra (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and the composition of the composites were investigated by TG-DTG analysis. The results indicate that the thermal stability of the composites is higher than that of the pure PANI which can be attributed to the interactions existed between PANI chains and ferrite particles.


2016 ◽  
Vol 879 ◽  
pp. 732-737 ◽  
Author(s):  
Anita Heczel ◽  
Lola Lilensten ◽  
Julie Bourgon ◽  
Loic Perrière ◽  
Jean Philippe Couzine ◽  
...  

High-Pressure Torsion (HPT) is one of the most effective severe plastic deformation techniques in grain refinement. The goal of this study was to investigate the influence of HPT on the microstructure and hardness of a Ti-rich High-Entropy Alloy (HEA). The evolution of the grain size due to 1 turn of HPT was studied by transmission electron microscopy. Besides the refinement of the microstructure, a phase transition also occurred during HPT, as revealed by X-ray diffraction. The initial bcc structure transformed into a martensitic phase throughout the material. The features of this phase transformation were studied on a sample compressed to low strain values. The hardness as a function of the distance from the center in the HPT-processed disk was measured and correlated to the microstructure.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mashael Alshabanat ◽  
Amal Al-Arrash ◽  
Waffa Mekhamer

Polymer nanocomposites of polystyrene matrix containing 10% wt of organo-montmorillonite (organo-MMT) were prepared using the solution method with sonication times of 0.5, 1, 1.5, and 2 hours. Cetyltrimethylammonium bromide (CTAB) is used to modify the montmorillonite clay after saturating its surface with Na+ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the montmorillonite before and after modification by CTAB. The prepared nanocomposites were characterized using the same analysis methods. These results confirm the intercalation of PS in the interlamellar spaces of organo-MMT with a very small quantity of exfoliation of the silicate layers within the PS matrix of all samples at all studied times of sonication. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA). The results show clear improvement, and the effects of sonication time are noted.


2005 ◽  
Vol 20 (10) ◽  
pp. 2682-2690 ◽  
Author(s):  
Yufang Zhu ◽  
Weihua Shen ◽  
Xiaoping Dong ◽  
Jianlin Shi

A stable mesoporous multilamellar silica vesicle (MSV) was developed with a gallery pore size of about 14.0 nm. A simulative enzyme, hemoglobin (Hb), was immobilized on this newly developed MSV and a conventional mesoporous silica material SBA-15. The structures and the immobilization of Hb on the mesoporous supports were characterized with x-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared, ultraviolet-visible spectroscopy, and so forth. MSV is a promising support for immobilizing Hb due to its large pore size and high Hb immobilization capacity (up to 522 mg/g) compared to SBA-15 (236 mg/g). Less than 5% Hb was leached from Hb/MSV at pH 6.0. The activity study indicated that the immobilized Hb retained most peroxidase activity compared to free Hb. Thermal stability of the immobilized Hb was improved by the proctetive environment of MSV and SBA-15. Such an Hb-mesoporous support with high Hb immobilization capacity, high activity, and enhanced thermal stability will be attractive for practical applications.


2013 ◽  
Vol 334-335 ◽  
pp. 60-64 ◽  
Author(s):  
Mohammad Reza Loghman-Estark ◽  
Reza Shoja Razavi ◽  
Hossein Edris

Scandia, yttria doped zirconia ((ZrO2)0.96(REO1.5)0.04(RE=Sc3+, Y3+)) nanoparticles were prepared by the modified sol-gel method. The microstructure of the products was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Thermal stabillity of SYSZ nanocrystals were also investigated. The SYSZ nanocrystals synthesized with EGM:Zr+4mole ratio 4:1, calcined at 700°C, have average diameter of ~20 nm.


2001 ◽  
Vol 16 (7) ◽  
pp. 1960-1966 ◽  
Author(s):  
K. Miyazawa ◽  
H. Satsuki ◽  
M. Kuwabara ◽  
M. Akaishi

The structure and hardness of C60 bulk specimens compressed under 5.5 GPa at room temperature to 600 °C are investigated by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Vickers hardness tests. A strong accumulation of the [1 1 0]tr orientation of high-pressure-treated C60 specimens was developed along the compression axis, and stacking faults and nano-sized deformation twins were introduced into the C60 specimens compressed at 450–600 °C. Curved lattice planes indicating a polymerization of C60 were observed by high resolution transmission electron microscopy (HRTEM). The polymerization of the high-pressure-compressed C60 is also supported by the computer simulation of HRTEM images.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Galehassadi ◽  
Fatemeh Hosseinzadeh ◽  
Mehrdad Mahkam

Abstract Nanocomposites of polystyrene (PS) was prepared with new styrenic ionic liquid, N-(4-vinyl benzyl)-(N,N-dimethylamino) pyridinium chloride[VBMAP], surfactants used as organic modifications for the clays. Sodium montmorillonite (Na-MMT) was successfully modified by [VBMAP] to become OMMT through cation exchange technique which is shown by the increase of basalspacing of clay by XRD. The composite material based on polystyrene and organo-modified montmorillonite (OMMT) was prepared by insitu polymerization and characterized. The morphology of the polymer/clay hybrids was evaluated by X-ray diffraction (XRD) ,transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showing good overall dispersion of the clay. The thermal stability of the polymer/clay nanocomposites were enhanced, as evaluated by thermogravimetric analysis.


2008 ◽  
Vol 584-586 ◽  
pp. 591-596 ◽  
Author(s):  
Jakub Čížek ◽  
Ivan Procházka ◽  
Bohumil Smola ◽  
Ivana Stulíková ◽  
Martin Vlach ◽  
...  

Mg-Tb-Nd ternary alloy represents a novel hardenable Mg-based alloy with enhanced strength and favorable creep properties. In the present work we studied microstructure of ultra fine grained (UFG) Mg-Tb-Nd alloy prepared by high pressure torsion (HPT). Lattice defects introduced into the specimen by the severe plastic deformation play a key role in physical properties of UFG specimens. It is known that positron lifetime (PL) spectroscopy is highly sensitive to open volume defects (like vacancies, dislocations, etc.). Therefore, PL spectroscopy is an ideal tool for defect characterizations in the HPT deformed specimens. In the present work we combined PL studies with transmission electron microscopy and microhardness measurements. After detailed characterization of the as-deformed structure, the specimens were step-by-step isochronally annealed and we investigated the development of microstructure with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document