Reciprocating Sliding Wear Behavior of Inconel 600 Mated with SUS 304 Stainless Steel at Elevated Temperatures

2006 ◽  
Vol 510-511 ◽  
pp. 270-273
Author(s):  
Kwon Yeong Lee ◽  
Chang Seon Hwang ◽  
Seon Jin Kim ◽  
Gyung Guk Kim ◽  
Ji Hui Kim ◽  
...  

The sliding wear behavior of a steam generator in a nuclear power plant (Inconel 600) was investigated at 225, 250 and 300°C. Effects of wear parameters such as sliding distance and contact stress were examined with SUS 304 (austenitic). In the prediction of the wear volume by Archard wear equation, the standard error range was calculated to be ±0.53×10-9 m3 and the reliability to be 71.9 % for the combination of Inconel 600 and SUS 304. The error range was considered to be relatively broad because the wear coefficient in Archard equation was assumed to be constant. However, the wear volume turned out to increase parabolically with the sliding distance owing to the combination of strain hardening of the wear surface and the oxidative wear. Based on the experimental results, the wear coefficient was modified as a function of the rotating sliding distance. The calculation with the modified wear equation showed that, although the error range was not significantly narrowed, the reliability increased from 71.9 to 78.1 %.

2006 ◽  
Vol 510-511 ◽  
pp. 566-569
Author(s):  
Gyung Guk Kim ◽  
Seung Dae Noh ◽  
Gi Sung Park ◽  
Seon Jin Kim ◽  
Deok Hyun Lee ◽  
...  

Wear damage of steam generator tubes for nuclear power plants can cause the leakage of radioactive substances. Therefore, the evaluation of integrity and safety for tubes is very important from the viewpoint of nuclear ecocide. In the present study, to investigate the wear properties of Inconel 600 and 690 steam generator tube materials mated with 409 stainless steel commonly used as support plate, sliding wear tests were performed with increasing sliding distance in air and in elevated temperature water environment, respectively. The wear volume of tube materials was less than those of supports under all conditions. There were no significant differences in the wear behavior for the Inconel 600 and 690 tubes, independently of the testing environment.


2012 ◽  
Vol 06 ◽  
pp. 479-484
Author(s):  
JIN MOO PARK ◽  
JAE HOON KIM ◽  
KYEONG LAK JEON ◽  
JUN KYU PARK

In water cooled reactors, the friction between spacer grid and fuel rod can lead to severe wear and it is an important topic to study. In the present study, sliding wear behavior of zirconium alloy was investigated in water and dry state using the pin-on-disc sliding wear tester. Sliding wear resistance of zirconium alloy against heat treated inconel alloy was examined at room temperature. The parameters in this study were sliding velocity, axial load and sliding distance. The wear characteristics of zirconium alloy was evaluated by friction coefficient, specific wear rate and wear volume. The micro-mechanisms responsible for wear in zirconium alloy were identified to be micro-cutting, micro-pitting, delamination and micro-cracking of deformed surface zone.


2005 ◽  
Vol 486-487 ◽  
pp. 137-140 ◽  
Author(s):  
Gyung Guk Kim ◽  
Ji Hui Kim ◽  
Kwon Yeong Lee ◽  
Seon Jin Kim ◽  
Deok Hyun Lee ◽  
...  

Wear damage of steam generator tubes of nuclear power plants can cause leakage of radioactive substances. So the evaluation of tubes’ integrity is very important from the viewpoint of nuclear ecocide. In the present study, sliding wear behaviors of Inconel 600 and 690 steam generator tube materials mated with 409 stainless steel commonly used as the support plate were investigated at room temperature in an air environment. For more precise prediction of wear behaviors of steam generator tubes, Archard equation was modified, and the modified wear coefficients were estimated as a function of sliding distance. When using the modified Archard equation, the reliabilities for prediction of wear behavior of Inconel 600 and 690 mated with 409 stainless steel increased from 71.8% to 83.8% and from 60.2% to 85.2%, respectively.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Naveed Anjum ◽  
S. L. Ajit Prasad ◽  
B. Suresha

The mechanical properties and dry sliding wear behaviour of glass fabric reinforced epoxy (G-E) composite with varying weight percentage of silicon dioxide (SiO2) filler have been studied in the present work. The influence of sliding distance, velocity, and applied normal load on dry sliding wear behaviour has been considered using Taguchi's L9orthogonal array. Addition of SiO2increased the density, hardness, flexural, and impact strengths of G-E composite. Results of dry sliding wear tests showed increasing wear volume with increase in sliding distance, load, and sliding velocity for G-E and SiO2filled G-E composites. Taguchi's results indicate that the sliding distance played a significant role followed by applied load, sliding velocity, and SiO2loading. Scanning electron micrographs of the worn surfaces of composite samples at different test parameters show smooth surface, microploughing, and fine grooves under low load and velocity. However, severe damage of matrix with debonding and fiber breakage was seen at high load and velocity especially in unfilled G-E composite.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1735 ◽  
Author(s):  
Liang Li ◽  
Jihe Feng ◽  
Ce Liang ◽  
Jian An

Dry sliding wear behavior of Mg97Zn1Y2 alloy was investigated at test temperatures of 50–200 °C under three sliding speeds of 0.8 m/s, 3.0 m/s and 4.0 m/s. The wear mechanisms in mild and severe wear regimes were identified by examination of morphologies and compositions of worn surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS), and from which wear transition maps under different sliding speeds were constructed on rectangular coordinate systems with applied load versus test temperature axes. It is found that under each sliding speed condition, mild–severe transition load decreases almost linearly within the test temperature range of 50 °C to 200 °C. Microstructure observation and hardness measurement in subsurfaces identify that the softening effect generating form dynamic crystallization (DRX) is the dominant mechanism for the mild–severe wear transition at elevated temperatures. The mild–severe wear transition at 50–200 °C follows the contact surface DRX temperature criterion, and the transition loads can be well evaluated using the criterion.


2014 ◽  
Vol 10 (2) ◽  
pp. 276-287
Author(s):  
Rajesh Siriyala ◽  
A. Gopala Krishna ◽  
P. Rama Murthy Raju ◽  
M. Duraiselvam

Purpose – Since, wear is the one of the most commonly encountered industrial problems leading to frequent replacement of components there is a need to develop metal matrix composites (MMCs) for achieving better wear properties. The purpose of this paper is to fabricate aluminum MMCs to improve the dry sliding wear characteristics. An effective multi-response optimization approach called the principal component analysis (PCA) was used to identify the sets of optimal parameters in dry sliding wear process. Design/methodology/approach – The present work investigates the dry sliding wear behavior of graphite reinforced aluminum composites produced by the molten metal mixing method by means of a pin-on-disc type wear set up. Dry sliding wear tests were carried on graphite reinforced MMCs and its matrix alloy sliding against a steel counter face. Different contact stress, reinforcement percentage, sliding distance and sliding velocity were selected as the control variables and the response selected was wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Optimization of dry sliding performance of the graphite reinforced MMCs was performed using PCA. Findings – Based on the PCA, the optimum level parameters for overall principal component (PC) of WVL and COF have been identified. Moreover, analysis of variance was performed to know the impact of individual factors on overall PC of WVL and COF. The results indicated that the reinforcement percentage was found to be most effective factor among the other control parameters on dry sliding wear followed by sliding distance, sliding velocity and contact stress. Finally the wear surface morphology of the composites has been investigated using scanning electron microscopy. Practical implications – Various manufacturing techniques are available for processing of MMCs. Each technique has its own advantages and disadvantages. In particular, some techniques are significantly expensive compared to others. Generally the manufacturer prefers the low cost technique. Therefore stir casting technique which was used in this paper for manufacturing of Aluminum MMCs is the best alternative for processing of MMCs in the present commercial sectors. Since the most important criteria of a dry sliding wear behavior is to provide lower WVL and COF, this study has intended to prove the application of PCA technique for solving multi objective optimization problem in wear applications like piston rings, piston rods, cylinder heads and brake rotors, etc. Originality/value – Application of multi-response optimization technique for evaluation of tribological characteristics for Aluminum MMCs made up of graphite particulates is a first-of-its-kind approach in literature. Hence PCA method can be successfully used for multi-response optimization of dry sliding wear process.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
N. Radhika ◽  
R. Raghu

LM13/AlN (10 wt. %) metal matrix composites (MMC) and unreinforced aluminum alloy were produced under stir casting route. Microstructural characteristics were examined on the developed composite using optical microscope. The hardness and tensile test were carried out on both unreinforced aluminum alloy and composite using Vickers hardness tester and universal testing machine (UTM), respectively. Dry sliding wear behavior of the composite and unreinforced aluminum alloy was evaluated using pin-on-disk tribometer based on the design of experiments approach. Experimental parameters such as applied load (10, 20, and 30 N), velocity (1, 2, and 3 m/s), and sliding distance (500, 1000, and 1500 m) were varied for three levels. Signal-to-noise (S/N) ratio analysis, analysis of variance, and regression analysis were also performed. The characterization results showed that reinforcement particles were uniformly distributed in the composite. The hardness and tensile test revealed greater improvement of property in composite compared to that of unreinforced alloy. Wear plot showed that wear was increased with increase in load and decreased with increase in velocity and sliding distance. S/N ratio analysis and analysis of variance (ANOVA) indicated that load has greater significance over the wear rate followed by velocity and sliding distance. Regression analysis revealed greater adequacy with the constructed model in predicting the wear behavior of composite and unreinforced aluminum alloy. Scanning electron microscopy (SEM) analysis is evident that the transition of wear from mild to severe occurred on increase of the load in the composite.


2009 ◽  
Vol 423 ◽  
pp. 125-130 ◽  
Author(s):  
Alvaro Mestra ◽  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

Duplex stainless steels contain similar amounts of austenite  and ferrite α. This two-phase microstructure leads to an excellent combination of mechanical properties and corrosion resistance. However, there are few works dealing with the wear behaviour of these steels. This paper aims to determine the sliding wear mechanisms of a duplex stainless steel type 2205. In order to do it, three different sliding velocities (0.2, 0.7 and 1.2 m/s) and six sliding distances (500, 1000, 2000, 3000, 4000 and 5000 m) were selected. The results show that wear rate depends on both sliding velocity and sliding distance. The wear mechanisms detected were plowing, microcracking and microcutting (typical mechanisms of fatigue wear). These mechanisms evolve according to sliding velocity and sliding distance, highlighting a transition zone in which wear rate is reduced.


Sign in / Sign up

Export Citation Format

Share Document