Damage Investigation in Aluminium Alloys by X Ray Tomography

2006 ◽  
Vol 519-521 ◽  
pp. 821-827 ◽  
Author(s):  
Éric Maire ◽  
J.C. Grenier ◽  
L. Babout

X-ray tomography allows the microstruture of aluminum alloys to be imaged non destructively in three dimensions (3D). This paper shows different examples of the use of this technique for the quantification of damage in model and industrial Al based materials. The model materials are used to setup the technique. The spherical shape of their inclusions makes it easy to compare the measurements with the prediction of standard model for damage. The industrial materials are characterized during in situ tensile but also ex situ bulging and plane strain tension tests. The respective contribution of initiation and growth of damage is measured separately and discussed. The 3D data are also used to quantify the anisotropy of the effect of damage.

2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


2010 ◽  
Vol 89-91 ◽  
pp. 503-508 ◽  
Author(s):  
J. Sheng ◽  
U. Welzel ◽  
Eric J. Mittemeijer

The stress evolution during diffusion annealing of Ni-Cu bilayers (individual layer thicknesses of 50 nm) was investigated employing ex-situ and in-situ X-ray diffraction measurements. Annealing at relatively low homologous temperatures (about 0.3 - 0.4 Tm) for durations up to about 100 hours results in considerable diffusional intermixing, as demonstrated by Auger-electron spectroscopy investigations (in combination with sputter-depth profiling). In addition to thermal stresses due to differences of the coefficients of thermal expansion of layers and substrate, tensile stress con-tributions in the sublayers arise during the diffusion anneals. The obtained stress data have been discussed in terms of possible mechanisms of stress generation. The influence of diffusion on stress development in the sublayers of the diffusion couple during heating and isothermal annealing was investigated by comparing stress changes in the bilayer system with corresponding results obtained under identical conditions for single layers of the components in the bilayer system. The specific residual stresses that emerge due to diffusion between the (sub)layers in the bilayer could thereby be identified.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


2019 ◽  
Vol 336 ◽  
pp. 169-173 ◽  
Author(s):  
Amélie Rochet ◽  
Ana Flávia Suzana ◽  
Aline R. Passos ◽  
Tiago Kalile ◽  
Felisa Berenguer ◽  
...  

2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2016 ◽  
Vol 7 ◽  
pp. 1350-1360 ◽  
Author(s):  
Christian Suchomski ◽  
Ben Breitung ◽  
Ralf Witte ◽  
Michael Knapp ◽  
Sondes Bauer ◽  
...  

Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol–gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, 57Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe3+ ions residing on tetrahedral and octahedral sites according to (Zn0.32Fe0.68)tet[Zn0.68Fe1.32]octO4±δ. Electron microscopy and direct-current magnetometry confirm the size uniformity of the nanocrystals, while frequency-dependent alternating-current magnetic susceptibility measurements indicate the presence of a superspin glass state with a freezing temperature of about 22 K. Furthermore, as demonstrated by galvanostatic charge–discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade – after activation – over hundreds of cycles. Overall, in addition to the good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable.


Author(s):  
Srimala Sreekantan ◽  
Roshasnorlyza Hazan ◽  
Zainovia Lockman ◽  
Ishak Mat

The present study is directed to clarify the influence of carbon doping on the degradation of methyl orange. TiO2 nanotubes were prepared by anodizing titanium foils in a two electrode configuration bath with titanium foil as the anode and platinum as the counter electrode. The electrochemical bathconsists of 1 M Na2SO4 with 0.7 g ammonium fluoride, NH4F. The nanotubes obtained were further doped with carbon via in-situ and ex-situ method. Incorporation of carbon on TiO2 via in-situ method is accomplished during the anodization process by introducing oxalic acid into electrolyte while theex-situ doping involves carbon incorporation into pre-fabricated TiO2 nanotube via flame annealing using carbon blackN330. Characterization such as Scanning Electron Microscope (SEM), Energy Dispersive X-ray Analysis (EDX), and X-Ray Diffraction (XRD) are used to determine the surfacemorphology, composition of dopants, and phases exists. Well ordered nanotube with good adherence and smooth surface was obtained for both methods. When the oxide was annealed, X-ray diffraction analysis revealed the presence of anatase and rutile phase. The photocatalytic properties of thepure TiO2 and carbon doped TiO2 were tested for methyl orange degradation and the result indicated that the in-situ doped TiO2 has much better degradation than the ex-situ and pure TiO2. The percentage of methyl orange degradation for in-situ was 20% and 41% higher than ex-situ doped TiO2 and pure TiO2, respectively.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 267 ◽  
Author(s):  
Vincenzo Stagno ◽  
Veronica Stopponi ◽  
Yoshio Kono ◽  
Annalisa D’Arco ◽  
Stefano Lupi ◽  
...  

Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km·yr−1 in the present-day or the Archaean mantle, respectively.


Sign in / Sign up

Export Citation Format

Share Document