The Combined Effect of Modifier and Grain Refiner AlTiBSr Master Alloy on Microstructure and Porosity of Aluminum Alloys

2006 ◽  
Vol 526 ◽  
pp. 223-228 ◽  
Author(s):  
Petru Moldovan ◽  
Gabriela Popescu ◽  
Marilena Cuhutencu

The aim of the paper is to present the influence of a new multifunctional material, a master alloy named Al-Sr-Ti-B, in aluminum foundry alloys. The Al-Sr-Ti-B master alloy represents a new combination of two master alloys, already known in aluminum industry, AlTiB and AlSr, used in treatment of aluminum alloys for grain refining and modification. As Strobloy, our master alloy contain fast dissolving SrAl4 particles and also nucleating particles as TiB2 and (Al,Ti)B2 which are important first in modification and second in grain refining of aluminum alloys. The paper presents optic and electron microscopy studies realized on AlSi7Mg alloy treated with this new multifunctional material

2007 ◽  
Vol 23 ◽  
pp. 295-298 ◽  
Author(s):  
Petru Moldovan ◽  
Gabriela Popescu ◽  
C.A. Popescu ◽  
Ioana Apostolescu ◽  
Aurelian Buzaianu

The paper’s aim is to present the processing of a new master alloy similar to STROBLOY. This alloy represents a combination of two master alloys, already known in aluminum industry (AlTiB and AlSr). The benefits of this new alloy are the cut of Ti, B and Sr consumption, as well as a grain refining/modification ecological technology for Al-Si and Al-Mg-Si alloys. So, this alloy was obtained from binary AlB8, AlSr10 and AlTi10 master alloys melted in an electric resistance furnace and argon atmosphere. Samples were cast in an iron mould. As STROBLOY, this new quaternary alloy contains fast dissolving SrAl4 particles important in modification stage, and nucleating particles such as TiB2 and (Al, Ti)B2 essential for grain refining of aluminum alloys.


2007 ◽  
Vol 29-30 ◽  
pp. 111-115 ◽  
Author(s):  
S.A. Kori ◽  
V. Auradi

In the present work binary Al-3Ti and Al-3B master alloys were prepared at different reaction temperatures in an induction furnace by the reaction of halide salts like potassium fluoborate and potassium titanium fluoride with liquid molten Al. The indigenously developed master alloys were used for grain refinement studies of Al-7Si alloy and evaluated for their grain refining ability by CACCA studies. The present results suggest that, the reaction temperature influences the size, size distribution and morphology of the intermetallic (Al3Ti in Al-3Ti, and AlB2/AlB12 in Al-3B) particles present in Al-3Ti and Al-3B master alloys. Grain refinement studies of Al-7Si alloy reveal that, Al-3Ti and Al-3B master alloys prepared at 8000C-60 min. have shown better grain refining efficiency on Al- 7Si alloy when compared to the master alloys prepared at 9000C-60 min and 10000C-60 min respectively. In addition, B-rich Al-3B master alloy shows efficient grain refinement than Ti rich Al- 3Ti master alloy.


2005 ◽  
Vol 475-479 ◽  
pp. 313-316
Author(s):  
Jian Guo Li ◽  
Min Huang ◽  
Zimu Shi ◽  
Dong Yu Liu

The AlTiC master alloy has been prepared in different components to refine 99.8%Al and 99.98%Al, then compared to two typical Al5Ti1B in refining efficiency and the grain nuclear. The result showed that the refining efficiency seemed better if the nucleation of high pure aluminum revealed complexity and variety. It may due to that the latency heterogeneous nucleation was efficient on the whole, consequently accelerated refining efficiency.


2019 ◽  
Vol 4 (1) ◽  
pp. 12-20
Author(s):  
Marianna Bubenkó ◽  
György Fegyverneki ◽  
Dániel Molnár ◽  
Mónika Tokár

Grain refining is an important technological step for the nucleus growth of the melt, in order to increase the number of nuclei, to improve mechanical properties (tensile strength, yield strength, hardness, elongation), feeding conditions and to decrease the tendency of hot tearing and the degree of sintering. [1][2] The aim of the experiments was the determination of the grain refining effects of titanium (Ti) addition in the form of AlTi5B1 master alloy to the examined alloys (AlSi7MgCu0.5 – AC 42 000, AlSi9Cu3Fe0.5 – 46 500; AlSi9Cu1 – AC 46 400). The results prove that the addition of small amount of master alloy has a favourable effect on the foundry practice.


2014 ◽  
Vol 574 ◽  
pp. 391-395
Author(s):  
Li Mi ◽  
Jun Jun Wang ◽  
Zhi Liu Hu

Al-Ti-B master alloy is the most widely used grain refiner in the aluminum fabrication industry, while it’s refinement mechanism is not clearly understand yet. The TiB2 in Al-Ti-B master alloy is one of important phase to grain refining, which intimately related to the generation of initial nucleus, the “fading” phenomenon of refining effect declines with the increase of holding or standing time in grain refining process. Besides, TiB2 is analyzed in several studies about the “poisoning” phenomenon, a large extent weaken of refining effect when Zr, Cr, Mn etc. exists. In this article, the impact of TiB2 to the refining effect of Al-Ti-B master alloy is discussed aiming at the roles and phenomenon mentions above.


2014 ◽  
Vol 1024 ◽  
pp. 251-254 ◽  
Author(s):  
Mohd Nasir Laila Masrur ◽  
Anasyida Abu Seman ◽  
Hussain Zuhailawati

Grain refining has been studied in the semi-solid-metal (SSM) casting by addition of master alloy Al-5Ti-1B using inclined slope. A356 aluminium alloy was melted at 850 °C and poured at 660 °C on the inclined slope into the steel mould. Grain refiner was added in various percentages of 0.2%, 0.5% and 1.0% in A356 aluminium alloy melt. Microstructure and microhardness were characterized using optical microscope and Vicker’s microhardness tester. The addition of master alloy Al-5Ti-1B not only refined but also increased the globularity of the primary α-Al particles. The higher hardness was achieved with 1% addition of master alloy Al-5Ti-1B.


2014 ◽  
Vol 794-796 ◽  
pp. 77-82
Author(s):  
Leandro Bolzoni ◽  
Magdalena Nowak ◽  
N. Hari Babu

The automotive industry is willing of employing a greater amount of light metals like aluminium, magnesium and titanium, in order to reduce the total weight of the cars and, consequently, fuel consumption. Even though some casting aluminium alloys are commonly employed for automotive structural applications, their mechanical performances can be improved by means of appropriate grain refining by heterogeneous nucleation. This practise is well established for wrought aluminium alloys by using Al-Ti-B master alloys but they are not effective in casting alloys due to the much higher silicon percentage (poisoning). A novel chemical composition which, actually, refines appropriately Al-Si alloys was developed at Brunel University. In this study the combined effect of casting temperature and addition of this novel grain refiner (NGR) on the microstructure of binary Al-Si alloys was considered. The addition of this NGR leads to the formation of finer primary α-Al grains, finer eutectic Al-Si intermetallics and less and smaller primary Si particles.


2017 ◽  
Vol 898 ◽  
pp. 1231-1235 ◽  
Author(s):  
Shun Cheng Wang ◽  
Ji Lin Li ◽  
Chun Lei Gan ◽  
Kai Hong Zheng

The Al-5Ti-1B, Al-10Ti, Al-4B master alloys and TiB2 powder were applied to refine the pure aluminum, respectively. The effects of the TiAl3 phase, TiB2 particle, and AlB2 phase on the grain size of pure aluminum were compared. The grain refinement mechanism of the Al-5Ti-1B grain refiner was studied. The results showed that the TiAl3 phase was an effective heterogeneous nucleus of the α-Al grain. But the TiAl3 phase in the Al-5Ti-1B grain refiner was not the heterogeneous nucleus of the α-Al grain due to its re-melting in the Al melt. The separate TiB2 particle or AlB2 phase was not the heterogeneous nucleus of the α-Al grain. However, the TiB2 coated by the TiAl3 phase can be the effective heterogeneous nucleus of the α-Al grain. The grain refinement mechanism of the Al-5Ti-1B grain refiner can be summarized as follows: when the Al-5Ti-1B grain refiner is added into the Al melt, the TiAl3 phases are re-melted to release the Ti atoms, while the TiB2 particles are remaining in the Al melt. During the solidification of the Al melt, the Ti atoms are segregating on the surface of TiB2 particles to form the TiAl3 phases. The TiB2 particles coated by the TiAl3 phases then reacts with the Al melt to generate α-Al crystal nucleus.


2019 ◽  
Vol 803 ◽  
pp. 17-21 ◽  
Author(s):  
Thee Chowwanonthapunya ◽  
Chaiyawat Peeratatsuwan

In this study, the structures of Al-5Ti-1B master alloy and its influence on microstructures and mechanical properties of A356 alloy were investigated. The results show that Al-5Ti-1B master alloy consisted of the uniform distribution of lump-like TiB2 and network of TiAl3 on α-Al matrix. The addition of the Al-5Ti-1B master alloy can significantly reduce the grain size of A356 alloy. The mechanical properties of A356 alloy, i.e. ultimate tensile strength, yield strength and elongation were also improved. The use of Al-5Ti-1B master alloy as a grain refiner in the casting process of A356 alloy can effectively enhance the grain refinement and thus improve the mechanical performance of A356 alloy.


Sign in / Sign up

Export Citation Format

Share Document