scholarly journals The effect of the excess Titanium content on the microstructure of Al – Si foundry alloys

2019 ◽  
Vol 4 (1) ◽  
pp. 12-20
Author(s):  
Marianna Bubenkó ◽  
György Fegyverneki ◽  
Dániel Molnár ◽  
Mónika Tokár

Grain refining is an important technological step for the nucleus growth of the melt, in order to increase the number of nuclei, to improve mechanical properties (tensile strength, yield strength, hardness, elongation), feeding conditions and to decrease the tendency of hot tearing and the degree of sintering. [1][2] The aim of the experiments was the determination of the grain refining effects of titanium (Ti) addition in the form of AlTi5B1 master alloy to the examined alloys (AlSi7MgCu0.5 – AC 42 000, AlSi9Cu3Fe0.5 – 46 500; AlSi9Cu1 – AC 46 400). The results prove that the addition of small amount of master alloy has a favourable effect on the foundry practice.


2013 ◽  
Vol 765 ◽  
pp. 23-27 ◽  
Author(s):  
Shou Xun Ji ◽  
Douglas Watson ◽  
Yun Wang ◽  
Mark White ◽  
Zhong Yun Fan

Titanium significantly improves the mechanical properties, especially the ductility of a diecast Al5Mg1.5Si0.6Mn alloy. When a titanium addition of 0.20 wt.% is made the elongation in the as-cast condition is increased from 11% to 18% and the yield strength is increased from 136 MPa to 157 MPa and the ultimate tensile strength from 296 MPa to 308 MPa. The improved mechanical performance can be attributed to the reduced tendency for hot tearing due to Ti addition.



2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.



2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.





2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.



2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.



2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744001 ◽  
Author(s):  
Yufan Wang ◽  
Yingbo Zhang ◽  
Wei Gao

The microstructures and mechanical properties of as-extruded Mg–2.3Zn–0.18Y–[Formula: see text]Zr ([Formula: see text] = 0.03, 0.06 and 0.13 at.%) alloys and aged Mg–2.3Zn–0.18Y–0.13Zr alloy were studied. The results revealed that the microstructures of as-extruded Mg–2.3Zn–0.18Y–[Formula: see text]Zr alloys are typical bimodal structures. The coarse [Formula: see text]-Mg grains are surrounded by fine dynamically recrystallized [Formula: see text]-Mg grains. The average size of [Formula: see text]-Mg grains decreases with increasing Zr content. Moreover, the addition of Zr (at.%) can improve the mechanical properties of alloy. The as-extruded Mg–2.3Zn–0.18Y–0.13Zr alloy has the best mechanical properties with ultimate tensile strength (UTS) and yield strength (YS) of 346 MPa and 292 MPa, respectively, and an elongation of 26.7%, which can be attributed to the grain refining effect and precipitate strengthening. The UTS and elongation of Mg–2.3Zn–0.18Y–0.13Zr alloy changed slightly after aging treatment, but the YS increases remarkably, with the maximum increase of 30 MPa. The fracture surfaces of all alloys consist of many tearing ridges and dimples.



1978 ◽  
Vol 56 (21) ◽  
pp. 2703-2706 ◽  
Author(s):  
Vladimir Hornof ◽  
Leoš Zeman

Ether-type linkages are formed as by-products during the preparation of polyethylene terephthalate from dimethyl terephthalate and ethylene glycol. Incorporated in the polymer, these linkages affect its physical and mechanical properties such as tensile strength, melting point, and resistance to oxidation. An improved chemical method of analysis has been developed allowing an accurate determination of ether bonds in polyester fibres. The method is based on the selective oxidation of ethylene glycol with periodic acid and takes advantage of hydrolysis with water under pressure to decompose the polymer. The method has been employed to study the effect of the concentration of polycondensation catalyst on the formation of ethers.



1890 ◽  
Vol 35 (4) ◽  
pp. 947-954 ◽  
Author(s):  
A. Crichton Mitchell

Until a few years ago it was the general opinion among metallurgists that the presence of manganese in steel exceeding the proportion of 1 per cent, is prejudicial to the value of the steel, inasmuch as a higher percentage of manganese has the effect of lowering markedly its tensile strength and toughness. But in 1884, Messrs Hadfield & Company, of the Hecla Steel Works, Sheffield, exhibited, at a meeting of the Institute of Mechanical Engineers, a number of samples of steel containing upwards of 10 to 15 per cent, of manganese, and submitted the results of experiments, which showed that the samples were, in point of tensile strength and hardness, in no way inferior to steel. Again, in 1888, Mr R. A. Hadfield read to the Institute a paper on the subject, giving the details of a large number of tests, which brought to light some interesting mechanical properties of alloys of manganese and iron. Since its introduction, these alloys (and particularly that containing 10 to 15 per cent, of manganese, known as “manganese-steel”) have been studied by several physicists, and further peculiarities have been found. It appeared desirable that the thermal conductivity of so peculiar a substance should be investigated. The present paper is an account of experiments made in the Physical Laboratory, Edinburgh University, with a view to the determination of its thermal conductivity. In the reduction of such experiments a knowledge of the specific heat is necessary, hence there is also given an account of experiments whereby the specific heat was determined.



2013 ◽  
Vol 32 (2) ◽  
pp. 163-169
Author(s):  
Josip Brnic ◽  
Goran Turkalj ◽  
Sanjin Krscanski

AbstractThis paper presents and analyzes the responses of non-alloy structural steel (1.0044) subjected to uniaxial stresses at high temperatures. This research has two important determinants. The first one is determination of stress-strain dependence and the second is monitoring the behavior of materials subjected to a constant stress at constant temperature over time. Experimental results refer to mechanical properties, elastic modulus, total elongations, creep resistance and Charpy V-notch impact energy. Experimental results show that the tensile strength and yield strength of the considered material fall when the temperature rises over 523 K. Significant decrease in value is especially noticeable when the temperature rises over 723 K. In addition, engineering assessment of fracture toughness was made on the basis of Charpy impact energy. It is visible that when temperature raises then impact energy increases very slightly.



Sign in / Sign up

Export Citation Format

Share Document