High Dose High Temperature Ion Implantation of Ge into 4H-SiC

2006 ◽  
Vol 527-529 ◽  
pp. 851-854 ◽  
Author(s):  
Thomas Kups ◽  
Petia Weih ◽  
M. Voelskow ◽  
Wolfgang Skorupa ◽  
Jörg Pezoldt

A box like Ge distribution was formed by ion implantation at 600°C. The Ge concentration was varied from 1 to 20 %. The TEM investigations revealed an increasing damage formation with increasing implantation dose. No polytype inclusions were observed in the implanted regions. A detailed analysis showed different types of lattice distortion identified as insertion stacking faults. The lattice site location analysis by “atomic location by channelling enhanced microanalysis” revealed that the implanted Ge is mainly located at interstitial positions.

2001 ◽  
Vol 669 ◽  
Author(s):  
Hajime Kobayashi ◽  
Ichiro Nomachi ◽  
Susumu Kusanagi ◽  
Fumitaka Nishiyama

ABSTRACTWe have investigated the lattice site location of B in Si using ion channeling in combination with nuclear reaction analysis (NRA). Silicon samples implanted with Boron at an energy of 10 keV and a dose of 5 × 1014 cm−2 (low dose samples) or 5 × 1015 cm−2 (high dose samples) were annealed at 1000 °C for 10 seconds (RTA) or at 800 °C for 10 minutes (FA). The activation efficiencies of these samples were estimated from the B atomic concentration and the hole concentration obtained by secondary ion mass spectrometry (SIMS) and spreading resistance profiling (SRP), respectively. We also studied the ion implantation damage of Si crystals using ion channeling combined with Rutherford backscattering spectrometry (RBS). We found that the activation efficiency is proportional to the substitutionality, meaning that substitutional B is fully activated without any carrier compensation. We also found that B atoms go to the substitutional sites and are activated up to the solubility limit in the high dose samples. However, the ion implantation damage of the crystalline Si in the high dose samples increases somewhat after annealing.


2002 ◽  
Vol 716 ◽  
Author(s):  
Takaaki Amada ◽  
Nobuhide Maeda ◽  
Kentaro Shibahara

AbstractAn Mo gate work function control technique which uses annealing or N+ ion implantation has been reported by Ranade et al. We have fabricated Mo-gate MOS diodes, based on their report, with 5-20 nm SiO2 and found that the gate leakage current was increased as the N+ implantation dose and implantation energy were increased. Although a work function shift was observed in the C-V characteristics, a hump caused by high-density interface states was found for high-dose specimens. Nevertheless, a work function shift larger than -1V was achieved. However, nitrogen concentration at the Si surface was about 1x1020 cm-3 for the specimen with a large work function shift.


2000 ◽  
Vol 650 ◽  
Author(s):  
Eduardo J. Alves ◽  
C. Liu ◽  
Maria F. da Silva ◽  
José C. Soares ◽  
Rosário Correia ◽  
...  

ABSTRACTIn this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 oC occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 μm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.


2000 ◽  
Vol 647 ◽  
Author(s):  
Eduardo J. Alves ◽  
C. Liu ◽  
Maria F. da Silva ◽  
José C. Soares ◽  
Rosário Correia ◽  
...  

AbstractIn this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 °C occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 µm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.


1990 ◽  
Vol 187 ◽  
Author(s):  
D. J. Howard ◽  
D. C. Paine ◽  
N. G. Stoffel

AbstractIn this paper we propose a new method for the synthesis of Si1−xGex strained-layer alloys using high-dose ion implantation of 74Ge at 200 keV into a preamorphized <001> Si wafer followed by solid phase epitaxy (SPE). Cross-sectional TEM was performed on samples at various stages of regrowth which revealed the evolution of the amorphous/crystalline interface and the development of strain relieving defects during SPE. We report that stacking faults are kinetically favored during SPE of Si1−xGex but are energetically feasible only above a critical strain energy. We propose a model that is based on the well known Matthews and Blakeslee approach which predicts the onset of stacking faults during SPE of high-dose ion implant-synthesized Si1−xGex/Si.


Shinku ◽  
1993 ◽  
Vol 36 (11) ◽  
pp. 856-861
Author(s):  
Akiyoshi CHAYAHARA ◽  
Masato KIUCHI ◽  
Atsushi KINOMURA ◽  
Yoshiaki MOKUNO ◽  
Yuji HORINO ◽  
...  

2017 ◽  
Vol 254 (9) ◽  
pp. 1700040 ◽  
Author(s):  
Masafumi Inaba ◽  
Akinori Seki ◽  
Kazuaki Sato ◽  
Tomoyoshi Kushida ◽  
Taisuke Kageura ◽  
...  

Author(s):  
A. Pérez-Rodríguez ◽  
A. Romano-Rodríguez ◽  
C. Serre ◽  
L. Calvo-Barrio ◽  
R. Cabezas ◽  
...  

1991 ◽  
Vol 244 ◽  
Author(s):  
L. Rebouta ◽  
J. C. Soares ◽  
M. F. Da Silva ◽  
J. A. Sanz-Garcia ◽  
E. Dieguez ◽  
...  

ABSTRACTIon-beam/channeling data for the lattice location of Ti, Hf, Er and Nd in LiNbO3 and LiNbO3: Mg are presented. These impurities are relevant in relation to waveguide and integrated optics devices. It is shown that co-doping with Mg markedly influences the lattice location observed in LiNbO3. The amorphization and recrystalization process following Hf implantation and annealing are also discussed.


Author(s):  
R. Drosd

It is well known that very high dose ion implantation of Si results in an amorphous (α) layer. However, the annealing of this α layer with its complicated dependence on such variables as implant species, implantation dose and temperature, crystal orientation, and thermal history is not well understood. Many of the past studies have employed the ion chanelling technique to study the crystallization of the α layer. Although this technique gives useful information concerning the α layer thickness, it tells little about the type and density of defects present. Hence the electron microscope gives unique information of the detailed mechanism of crystallization of α Si layers.One of the most striking features of the annealing behaviour is its dependence on the crystal orientation. Previous studies indicate the (111) orientation crystallizes much more slowly than the (100), leaving behind a high density of stacking faults and twins.


Sign in / Sign up

Export Citation Format

Share Document