Vertical edge graphite layer on recovered diamond (001) after high-dose ion implantation and high-temperature annealing

2017 ◽  
Vol 254 (9) ◽  
pp. 1700040 ◽  
Author(s):  
Masafumi Inaba ◽  
Akinori Seki ◽  
Kazuaki Sato ◽  
Tomoyoshi Kushida ◽  
Taisuke Kageura ◽  
...  
2017 ◽  
Vol 254 (9) ◽  
pp. 1770249
Author(s):  
Masafumi Inaba ◽  
Akinori Seki ◽  
Kazuaki Sato ◽  
Tomoyoshi Kushida ◽  
Taisuke Kageura ◽  
...  

Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


2006 ◽  
Vol 527-529 ◽  
pp. 851-854 ◽  
Author(s):  
Thomas Kups ◽  
Petia Weih ◽  
M. Voelskow ◽  
Wolfgang Skorupa ◽  
Jörg Pezoldt

A box like Ge distribution was formed by ion implantation at 600°C. The Ge concentration was varied from 1 to 20 %. The TEM investigations revealed an increasing damage formation with increasing implantation dose. No polytype inclusions were observed in the implanted regions. A detailed analysis showed different types of lattice distortion identified as insertion stacking faults. The lattice site location analysis by “atomic location by channelling enhanced microanalysis” revealed that the implanted Ge is mainly located at interstitial positions.


1990 ◽  
Vol 205 ◽  
Author(s):  
L. De Wit ◽  
S. Roorda ◽  
W.C. Sinke ◽  
F.W. Saris ◽  
A.J.M. Berntsen ◽  
...  

Structural relaxation of amorphous Si is studied in the temperature range 500-850 °C using Raman spectroscopy. The minumum value for the Raman peakwidth that can be obtained is inversely proportional to the anneal temperature. The relaxation process is basically the same in a-Si prepared by ion implantation and by vacuum evaporation.


2010 ◽  
Vol 49 (4) ◽  
pp. 040203 ◽  
Author(s):  
Yasuyuki Kawada ◽  
Takeshi Tawara ◽  
Shun-ichi Nakamura ◽  
Takashi Tsuji ◽  
Masahide Gotoh ◽  
...  

2005 ◽  
Vol 483-485 ◽  
pp. 777-780 ◽  
Author(s):  
Wook Bahng ◽  
Geun Ho Song ◽  
Nam Kyun Kim ◽  
Sang Cheol Kim ◽  
Hyoung Wook Kim ◽  
...  

The effects of the damage induced during ion implantation on the surface roughening and oxide growth rate were investigated. Using several scheme of doses and acceleration energies, it is found that the amount of the dose predominantly produce damage rather than the acceleration energy, especially near the surface region. It was also found that the damage affects not only the oxide growth rate but also the surface roughening during high temperature annealing. The edge of highly implanted area may have higher doping concentration due to the vicinal side wall effect of the thick oxide mask for ion implantation. It was confirmed by the trench formation after thermal oxide remove.


2004 ◽  
Vol 815 ◽  
Author(s):  
Y. Negoro ◽  
T. Kimoto ◽  
H. Matsunami

AbstractHigh-dose aluminum-ion (Al+) implantation into 4H-SiC (11-20) and (0001) has been investigated. Surface morphologies of implanted (0001) samples were improved by annealing with a graphite cap. Implant-dose dependence and annealing-time dependence of electrical properties are examined by Hall-effect measurements. A low sheet resistance of 2.3 kΩ/sq. was obtained in (0001) by high-dose Al+ implantation at 500 °C with a dose of 3.0 × 1016 cm−2 and high-temperature annealing at 1800 °C for a short time of 1 min. In the case of (11-20), even room-temperature implantation brought a low sheet resistance below 2 kΩ/sq. after annealing at 1800 °C.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 41
Author(s):  
Shi ◽  
Lin ◽  
Wei

The CdTe cap layers were grown on CdZnTe-substrated HgCdTe (MCT) LPE epilayers by magnetron sputtering and thermal evaporation. The diffusion behaviors of Cd & Hg components and impurities (As or In) in these CdTe/MCT structures subjected to As ion implantation and various Hg overpressure annealing processes were investigated. The conclusions indicate that the defects at the CdTe/MCT interface could produce the accumulations of impurities and the distributions of induced damages (related to the cap layer structure) have a significant influence on the diffusion of components and impurities. By adjusting annealing procedures, the diffusions of components and impurities can be controlled.


1987 ◽  
Vol 93 ◽  
Author(s):  
A. H. van Ommen ◽  
H. J. Ligthart ◽  
J. Politiek ◽  
M. P. A. Viegers

ABSTRACTHigh quality Silicon-On-Insulator, with a dislocation density lower than 105cm−2, has been formed by high temperature annealing of high-dose oxygen implanted silicon. In the as-implanted state, oxygen was found to form precipitates in the top silicon film. In the upper region these precipitates were found to order into a superlattice of simple cubic symmetry. Near the interface with the buried oxide film the precipitates are larger and no ordering occurs in that region. Contrary to implants without precipitate ordering where dislocations are observed across the entire layer thickness of the top silicon film, dislocations are now only found near the buried oxide. The precipitate ordering appears to prevent the dislocations to climb to the surface. High temperature annealing results in precipitate growth in this region whereas they dissolve elsewhere. These growing precipitates pin the dislocations and elimination of precipitates and dislocations occurs simultaneously, resulting in good quality SOI material.


Sign in / Sign up

Export Citation Format

Share Document