Fluidity Evolution of an Al-10%B4C Metal Matrix Composite

2007 ◽  
Vol 546-549 ◽  
pp. 605-610 ◽  
Author(s):  
Zhan Zhang ◽  
X. Grant Chen ◽  
André Charette

Aluminum boron carbide particulate reinforced composites are advanced materials which have superior mechanical properties, and especially have the capability to capture neutrons. The liquid mixing process is one of the methods to produce economically and effectively the metal matrix composites. However, it was found that the fluidity of the composites was instable during liquid holding and casting. To examine the fluidity evolution over the time, the melt of an Al-10%B4C composite was hold at a constant temperature for a long period, and the fluidity was evaluated by means of a vacuum fluidity test. The microstructure of the fluidity test samples was examined by optical and electron microscopes. It is found that the interfacial reaction products between B4C and Al-matrix play an important role for the deterioration of the composite fluidity.

1991 ◽  
Vol 238 ◽  
Author(s):  
R. Mitra ◽  
W. A. Chiou ◽  
J. R. Weertman ◽  
M. E. Fine ◽  
R. M. Aikin

ABSTRACTThe metal-ceramic interface in an XDTM Al/TiCp metal matrix composite has been characterized in as-extruded, recrystallized, and high temperature heat-treated conditions. In both the as-extruded and recrystallized composite, the interface is atomically abrupt. Localized orientation relationships exist between Al and Tic that lead to some degree of coherency at the interface. Recrystallization produces semicoherent interfaces by formation of subgrains in the Al adjacent to the Tie particles. Few interfaces show cracking, even after extensive deformation. Lack of cracking together with the direct contact down to atomic level, observed between the two phases are evidence for excellent bonding between the carbide particles and the aluminum matrix. Heat treating samples at 913 k for 24 hours produces reaction products like Al3Ti and Al4C3. These reactions are explained on the basis of thermodynamic data.


2007 ◽  
Vol 534-536 ◽  
pp. 217-220 ◽  
Author(s):  
Sung Yeal Bae ◽  
In Sup Ahn ◽  
Ho Jung Cho ◽  
Chul Jin Kim ◽  
Dong Kyu Park

TiC particulate reinforced Fe matrix composite compacts with controlled interfacial reaction was processed by spark plasma sintering after mechanical alloying. Milled powders were fabricated for 1-5 hours by spex shaker mill with the ball to powder ratio of 25:2. Metal matrix composites (MMCs) based on the Fe-40%TiC system can be synthesized by spark plasma sintering of the D’AE powders with TiH2-graphite powders under vacuum in the temperature range 1273-1473K for 5-20 min. TiC phase was formed by self combustion reaction with temperature increase. The specimen that was formed by sintering Fe-TiC powders displayed a microstructure of uniformly dispersed TiC grain in a continuous metal matrix. The densifications of the TiC-Fe materials were increased as the heat-treatment holding time increasing. In the same time, relative density and hardness of TiC-Fe sintering materials was increased.


Sign in / Sign up

Export Citation Format

Share Document