A Comparison of Weld Properties with or without Filler Wire on Laser Welding of Magnesium Alloy for Car Industry

2008 ◽  
Vol 580-582 ◽  
pp. 489-492 ◽  
Author(s):  
Mok Young Lee ◽  
Woong Seong Chang ◽  
Sook Hwan Kim

Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused by high oxidization tendency and low vapour temperature. In this study, the welding performance of magnesium alloy was investigated for automobile application. The material was rolled magnesium alloy sheet contains 3wt%Al, 1wt%Zn and Mg balance. The effects of filler wire addition was investigated on 2kW Nd:YAG laser welding. For the results, the mechanical properties of welded specimen were similar with base metal in laser welding with and without filler wire. The bridging ability was improved with filler wire without weld properties deterioration on laser welding of magnesium alloy.

Author(s):  
Guolin Hu ◽  
Chunrong Pan

Magnesium alloys have been known as the next generation material for lightweight body structures. Pulsating hydroforming is an effective method to improve magnesium alloy sheet forming performance, and the formed parts are characterized by lightweight, high-specific strength and stiffness. The deformation performance of magnesium alloy sheet AZ31B with a thickness of 0.6 mm under pulsating hydroforming has been investigated by means of experimental study, numerical simulation and theoretical analysis. The results show that under the same maximum hydraulic pressure, compared with simple linear loading, the magnesium alloy forming parts with pulsating hydraulic loading not only have better wall thickness uniformity and larger bulging height but also can delay the occurrence of fracture, improve the forming performance and ultimate the forming ability of magnesium alloy sheet. A new evaluation index is proposed to simplify the comprehensive forming performance of magnesium alloy parts with different amplitudes and frequencies more accurately, which can also be applied to determine the optimal forming parameters of magnesium alloy sheet AZ31B in the pulsating loading condition.


2021 ◽  
Vol 904 ◽  
pp. 167-173
Author(s):  
Fang Yu Chen ◽  
Ding Feng Ma ◽  
Xiao Ming Zhou

In many structural applications, such as marine, aircraft and so on, structures are designed to withstand high impact loading, because they may be subjected to impact of the projectiles with high velocity [1,2] . Fabrics become good choice to resist impact of ballistic [3] because of light weight and high specific strength .


2017 ◽  
Vol 54 (3) ◽  
pp. 031404
Author(s):  
吴冬冬 Wu Dongdong ◽  
柴东升 Chai Dongsheng ◽  
马广义 Ma Guangyi ◽  
周思雨 Zhou Siyu ◽  
于京令 Yu Jingling ◽  
...  

2011 ◽  
Vol 278 ◽  
pp. 551-556 ◽  
Author(s):  
Helmut Clemens ◽  
Wilfried Smarsly

Development and processing of high-temperature materials is the key to technological progress in engineering areas where materials have to meet extreme requirements. Examples for such areas are the aerospace and automotive industries. New structural materials have to be stronger, stiffer and lighter to withstand the extremely demanding conditions in the next generation of aero- and automotive engines. Intermetallic -TiAl based alloys exhibit numerous attractive properties which meet these demands. These properties include high melting point, low density, high specific elastic modulus, good oxidation and burn resistance, and high specific strength up to application temperatures of 700 to 800°C. Thus, current -TiAl based alloys outperform advanced Ti-based alloys and have the potential to replace heavy Ni-based superalloys.


Author(s):  
S. Tsuda ◽  
S. Yoshihara ◽  
S. Kataoka

Dry press forming which hasn’t used lubricants in the process is the attractive forming technique of zero emission for the lubricants. As one of the dry press forming techniques, the usage of dies coated with a chemical vapor deposition (CVD) diamond film, which are expected to be applied to forming tools owing to their high tribological properties, abrasion resistance and heat resistance, has been proposed. Magnesium alloys have attracted attention owing to their advantages over what such as, high specific strength and ease of recycling. However, they have intractable characteristics, and it is necessary to perform the forming technique at high temperature and to consider lubrication condition. In this study, diamond-coated dies were used in the deformation of magnesium alloy sheets without lubricants in press forming, and the formability of magnesium alloy and its effect on the surface texture of a formed-cup were investigated. Dry deep-drawing tests and dry ironing tests were carried out to estimate the effect of the diamond-coated dies on the formability of magnesium alloy sheets. Furthermore, the formability obtained using the above-mentioned tests was compared with that obtained in tests using non-lubricant dies with traditional lubricant. AZ31 magnesium alloy sheets (thickness: t0 = 0.5 mm) were deformed at 200 °C in dry deep-drawing tests. From the results, it was found that what can be deformed using diamond-coated dies. Moreover, a 20% reduction in drawing force was confirmed compared with the usage of the traditional lubricant (MoS2). Meanwhile, dry ironing tests were performed under conditions of 10% ironing ratio by a method similar to the dry deep-drawing tests. In general, the ironing process, which is the most difficult step in lubrication in sheet forming, has been enabled by the diamond coating technique. Furthermore, it was observed that the surface roughness of the formed-cup walls using the diamond-coated dies was 0.4 μmRz, and, 1.3 μmRz in case of MoS2. It was confirmed that the application of diamond-coated dies improved the surface roughness of the formed-cup. It produced an improvement in the formability of magnesium alloys compared with the traditional lubrication technique (use of MoS2). It was concluded that the validity of the use of diamond-coated dies became clear.


2016 ◽  
Vol 725 ◽  
pp. 636-640
Author(s):  
Zhen Ming Wang ◽  
Hong Yang Zhao ◽  
Xiao Dong Hu ◽  
Yan Qing Lu ◽  
Dong Ying Ju

Magnesium alloy is honored as green engineering material for its low density, high specific strength, high specific rigidity, well cutting processing property, well electromagnetic shielding property, heat conduction and easy to recycle. In this paper, AZ31 Magnesium alloy sheet at difference thickness were prepared by symmetric and asymmetric rolling employed with six-roller mill. Microstructure of the two kinds of rolling magnesium alloy thin sheets at 0.5mm thickness were investigated. The grain distribution of AZ31magnesium alloy sheets made by asymmetry rolling at room temperature are more uniform than those made by symmetry process. The grains made by asymmetry are more tiny and the tensile strength and elongation increased obviously and the mechanical properties got better. At room temperature, value of n increased. Large value of n benefit to stamping forming. At room temperature, the value of LDR of asymmetry rolling sheets is 1.26, which was higher than symmetry rolling. So asymmetry rolling benefits to stamping forming.


2021 ◽  
Vol 287 ◽  
pp. 129255
Author(s):  
X.W. Liu ◽  
Z.C. Bai ◽  
X.F. Ding ◽  
J.Q. Yao ◽  
L. Wang ◽  
...  

2021 ◽  
Vol 63 (2) ◽  
pp. 176-181
Author(s):  
Mehmet Şükrü Adin ◽  
Erol Kılıçkap

Abstract The use of adhesive joints is increasing in aerospace, aviation, automotive, construction and marine industry due to their easily applicable properties, low-costs and light weights compared to traditional jointing methods such as bolts, rivets, welding and soldering. Due to the high fatigue strength, resistance to seawater corrosion and light weight, aluminum alloys, with their high satiety, fracture strength, light weight, high specific strength and good dimensional stability and other properties, glass fiber reinforced composite materials have widespread uses.


Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Gaetano Corrado ◽  
Francesco Cardaropoli ◽  
Vincenzo Sergi

Titanium alloys are employed for several applications, ranging from aerospace to medicine. In particular, Ti-6Al-4V is the most common, thanks to an excellent combination of low density, high specific strength and corrosion resistance. Laser welding has been increasingly considered as an alternative to traditional techniques to join titanium alloys. An increase in penetration depth and a reduction of possible welding defects is achieved indeed; moreover a smaller grain size in the fused zone is benefited in comparison to either TIG and plasma arc welding, thus providing an increase in the tensile strength of the welded structures. The aim of this work is to develop the regression model for a number of responses which are crucial for the feature of the joint. The study was carried out on 3 mm thick Ti-6Al-4V plates; a square butt welding configuration was considered employing a disk-laser source. A 3-level factorial plan was hence arranged in a face-centred cubic scheme. The responses were analyzed referring to the governing parameters. Then, an optimization was carried out via statistical tools, in order to find the optimal welding set-up for the alloy under examination.


Sign in / Sign up

Export Citation Format

Share Document