Susceptibility to Stress Corrosion Cracking in Ammonia of Nanostructured Cu-10wt%Zn Alloy Produced by Severe Plastic Deformation

2008 ◽  
Vol 584-586 ◽  
pp. 887-892 ◽  
Author(s):  
Hiroyuki Miyamoto ◽  
Alexei Vinogradov ◽  
Satoshi Hashimoto

In this study, susceptibility to SCC of nanostructured Cu-10wt%Zn alloys, produced by equal-channel angular pressing (ECAP) was investigated under the constant stress test in ammonia vapour, which has been well-known typical environment for IGSCC of Cu-Zn alloy. Billets having diameter of 20 mm and length of 100 mm were subjected to ECAP for eight passes at room temperature to obtain structure with grain size of about 100 nm. After ECAP, some of the billets were flush-annealed in 473 K for 60 seconds to decrease excessive unequilibrium dislocations at grain boundaries. Coarse grained specimens without ECAP and one-pass specimens were also tested for comparison. The specimens for SCC were tensioned by a constant load in ammonia vapour inside a glass chamber for 24 hours at room temperature. After the SCC tests, maximum length of cracks was evaluated by SEM. Specimen having UFG structure by 8-passes exhibited cracks in lower applied stress ratio, (=σa/σys) compared with 0- and 1-pass samples, where σa is applied stress and σys is yield stress, respectively. Most importantly, the specimen with annealed at 473K for 60s after ECAP cracked in higher applied stress. It became less sensitive to SCC after flush annealing although mechanical properties were not changed considerably. In our previous studies, we reported that the SCC of UFG copper produced by ECAP, and the sensitivity to SCC becomes lower by flush annealing. Results are discussed in terms of grain boundary state with or without extrinsic grain boundary dislocations

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 803
Author(s):  
Jiangjiang Hu ◽  
Shuo Sun ◽  
Wei Zhang ◽  
Guangjian Peng ◽  
Shuang Han ◽  
...  

Zamak 3 alloy treatment by sliding-friction treatment (SFT) was investigated by nanoindentation to explore the influence of microstructure and strain rate on nanoscale deformation at room temperature. The results show that obvious material softening occurs in the ultrafine-grained (UFG) Zn alloy and strain-hardening happens in the twinning-deformed layer, respectively. It can be concluded that almost constant values of V in the UFG Zn alloy contribute to the dislocations moving along the grain boundary (GB) not cross the grain interior. In the twinning-deformed layer, the highly frequent dislocation–twinning boundary (TB) interactions are responsible for subsequent inverse Cottrell–Stokes at lower stress, which is quite different from dislocation–dislocation reaction inside the grain in their coarse-grained (CG) counterpart.


2007 ◽  
Vol 539-543 ◽  
pp. 2904-2909 ◽  
Author(s):  
Vàclav Sklenička ◽  
Jiří Dvořák ◽  
Marie Kvapilová ◽  
Milan Svoboda ◽  
Petr Král ◽  
...  

This paper examines the effect of equal-channel angular pressing (ECAP) on creep behaviour of pure aluminium, binary Al-0.2wt.%Sc alloy and ternary Al-3wt.%Mg-0.2wt.%Sc alloy. The ECAP was conducted at room temperature with a die that had a 90° angle between the channels and 8 repetitive ECAP passes followed route BC. Constant stress compression creep tests were performed at 473 K and stresses ranging between 16 to 80 MPa on ECAP materials and, for comparison purposes, on the initial coarse-grained materials. The results showed that the creep resistance of the ECAP processed Al-Sc and Al-Mg-Sc alloys was markedly deteriorated with respect to unpressed coarse-grained materials.


2010 ◽  
Vol 667-669 ◽  
pp. 915-920
Author(s):  
Konstantin Ivanov ◽  
Evgeny V. Naydenkin

Deformation mechanisms occurring by tension of ultrafine-grained aluminum processed by equal-channel angular pressing at room temperature are investigated using comparative study of the microstructure before and after tensile testing as well as deformation relief on the pre-polished surface of the sample tested. Deformation behavior and structure evolution during tension suggest development of grain boundary sliding in addition to intragrain dislocation slip. Contribution grain boundary sliding to the overall deformation calculated using the magnitude of shift of grains relative to each other is found to be ~40%.


2018 ◽  
Vol 385 ◽  
pp. 228-233
Author(s):  
Elena V. Bobruk ◽  
Denis G. Tyulenev ◽  
Oleg V. Golubev ◽  
Maxim Y. Murashkin

High pressure torsion (HPT) and equal channel angular pressing in parallel channels (ECAP-PC) at room temperature are used to form homogeneous ultrafine-grained (UFG) structure with a grain size of the aluminum matrix of 350 and 700 nm, respectively, in Al-30Zn (wt. %) specimens. The UFG samples with special geometry produced from the specimens processed by SPD techniques were subjected to sphere-shaped dimple extrusion testing (via the Erikson test method) and bended plate extrusion to determine the material formability during cold sheet metal forming. The same tests were performed on the material with coarse-grained (CG) structure for the sake of comparison. The obtained results are discussed.


2006 ◽  
Vol 503-504 ◽  
pp. 447-454 ◽  
Author(s):  
Dong Hyuk Shin ◽  
Woo Gyeom Kim ◽  
Jung Yong Ahn ◽  
Kyung Tae Park ◽  
Yong Suk Kim

Ultrafine grained (UFG) ferrite-martensite dual phase steels were fabricated by equal channel angular pressing and subsequent intercritical annealing. Their room temperature tensile properties were examined and compared to those of coarse grained counterpart. The formation of UFG martensite islands of ~ 1 μm was not confined to the former pearlite colonies but they were uniformly distributed throughout UFG matrix. The strength of UFG dual phase steels was much higher than that of coarse grained counterpart but uniform and total elongation were not degraded. More importantly, unlike most UFG metals showing negligible strain hardening, the present UFG dual phase steels exhibited extensive rapid strain hardening.


2008 ◽  
Vol 584-586 ◽  
pp. 380-386 ◽  
Author(s):  
Jens Ribbe ◽  
Guido Schmitz ◽  
Y. Amouyal ◽  
Yuri Estrin ◽  
Sergiy V. Divinski

The radiotracer technique was applied for measuring grain boundary diffusion of Ni in ultrafine grained (UFG) copper materials with different nominal purities and in a Cu—1wt.%Pb alloy. The UFG specimens were prepared by equal channel angular pressing at room temperature. The stability of the microstructure was studied by focused ion beam imaging. Grain boundary diffusion of the 63Ni radioisotope was investigated in the temperature interval from 293 to 490K under the formal Harrison type C kinetic conditions. Two distinct short-circuit diffusion paths were observed. The first (relatively slow) path in the UFG materials corresponds unambiguously to relaxed high-angle grain boundaries with diffusivities which are quite similar to those in the respective coarse-grained reference materials. The second path is characterized by significantly higher diffusivities. The experimental data are discussed to elucidate the contribution of nonequilibrium grain boundaries in the deformed materials. Alternative contributions of other shortcircuit diffusion paths cannot be ruled out, particularly for the Cu-Pd alloy.


2013 ◽  
Vol 706-708 ◽  
pp. 78-81 ◽  
Author(s):  
D.R. Fang ◽  
F.F. Liu ◽  
Chun Liu

Cu-32wt.%Zn alloy was subjected to equal channel angular pressing (ECAP) and subsequent low temperature annealing treatment, and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained alloy decreases, in comparison with the coarse-grained alloy. Meanwhile, it is noted that the corrosion resistance of the sample subjected to ECAP can be further improved by relief annealing.


2006 ◽  
Vol 503-504 ◽  
pp. 805-810 ◽  
Author(s):  
Bernhard Mingler ◽  
V.V. Stolyarov ◽  
Michael Zehetbauer ◽  
Wolfgang Lacom ◽  
Hans Peter Karnthaler

Conventional coarse grained (CG) commercial pure (CP) Ti Grade 2 was studied after cold rolling (CR) at room temperature, and after equal channel angular pressing (ECAP) at 450° C followed by CR, by transmission electron microscopy (TEM) methods. CR of the CG material leads to a microstructure showing initially twins with (0112) type and later subgrains separated by lowangle grain boundaries. CR carried out after ECAP yields the fragmentation of fine grains (300 – 800 nm) mostly bounded by high-angle boundaries into elongated subgrains (~ 100 nm). It was shown with in-situ annealing experiments in the TEM that this microstructure is thermally stable up to a temperature of 450° C. Tensile tests showed that the combination of ECAP with CR has the potential to produce at the same time high strength (941 MPa) and high ductility (16.7%).


2008 ◽  
Vol 584-586 ◽  
pp. 481-486 ◽  
Author(s):  
Oleg Sitdikov ◽  
Elena Avtokratova ◽  
Taku Sakai ◽  
Kaneaki Tsuzaki ◽  
Rustam Kaibyshev ◽  
...  

Microstructural evolution taking place during equal channel angular pressing (ECAP) was studied in a commercial coarse-grained Al-6%Mg-0.4%Mn-0.3%Sc alloy in a temperature interval 200- 450oC (~0.5-0.8 Tm). Samples were pressed using route A to a total strain of 12 and quenched in water after each ECAP pass. Uniform fine-grained microstructures with the average grain sizes of 0.7 and 2.5 0m, are almost fully evolved at high ECAP strains at 250oC and 450oC, respectively, while ECAP at 300oC (~0.6 Tm) leads to the formation of bimodal grain structure with fine grains of around 1 µm and relatively coarse grains of around 8 µm. The latter are developed due to the occurrence of static recrystallization during “keeping” time in the ECAP channel and/or reheating between ECAP passes. The microstructural development under warm-to-hot ECAP conditions is discussed in terms of the large potential for grain boundary migration resulted from an overlapping of accelerated grain boundary mobility at high pressing temperatures and enhanced driving force for recrystallization, which is caused by a strong inhibition of dynamic recovery in a heavily-alloyed Al alloy.


2018 ◽  
Vol 383 ◽  
pp. 96-102 ◽  
Author(s):  
Vladimir V. Popov ◽  
Gerrit Reglitz ◽  
Evgeniy V. Shorohov ◽  
E.N. Popova ◽  
Alexey V. Stolbovsky ◽  
...  

Formation of microstructure in Ni under equal-channel angular pressing (ECAP) and dynamic channel-angular pressing (DCAP), its thermal stability and diffusion properties of grain boundaries are investigated. Grain boundary diffusion in the ultrafine-grained Ni is found to be significantly faster than in the coarse-grained Ni, which indicates a 'non-equilibrium' (deformation-modified) state of grain boundaries in the former. The effect of non-equilibrium state of grain boundaries on the level of internal stresses is analyzed.


Sign in / Sign up

Export Citation Format

Share Document